内容概要:本文介绍了一种新的优化算法——冠豪猪优化算法(CPO),并将其应用于变分模态分解(VMD)中,以优化VMD的参数。CPO算法通过模拟冠豪猪的觅食行为,在多维度、非线性和复杂问题的求解中表现出色。文中详细介绍了CPO-VMD的优化流程,包括初始化参数、选择适应度函数、运行CPO算法、执行VMD分解以及评估和选择最佳参数。实验部分展示了使用单列信号数据(如故障信号、风电等时间序列数据)进行的测试,验证了CPO-VMD方法的有效性。 适合人群:从事信号处理、故障诊断、风电等领域的研究人员和技术人员,尤其是对优化算法和VMD分解感兴趣的学者。 使用场景及目标:适用于需要对复杂信号进行有效分解和处理的场合,如故障检测、风力发电监控等。目标是通过优化VMD参数,提升信号处理的精度和效率。 其他说明:程序已在Matlab上调试完成,可以直接运行,仅需替换Excel数据。支持四种适应度函数(最小包络熵、最小样本熵、最小信息熵、最小排列熵),用于确定最佳的k和α参数。
2025-05-22 15:55:23 1.02MB
1
从excel中读取信号,首先计算信号的vmd分解,得到imf分量,然后根据imf分量与原始信号的相关系数确定出信号imf喝噪声imf,对有用的imf进行小波阈值滤波,最后对滤波后的imf进行重构输出信号。 下图是流程图盒vmd分解结果的时域后频谱
2023-11-20 11:17:04 1.56MB 流程图
1
变分模态分解(Variational Mode Decomposition,VMD)是由 Dragomiretskiy 等人提出的一种自适应信号处理方法,通过迭代搜寻变分模态 的最优解,不断更新各模态函数及中心频率,得到若干具有一定宽带的模态函数。利用VMD对凯斯西储大学轴承进行信号分解,效果较好,可作为对比实验。
1
vmd分解之后分解信号和原信号的对比图、频谱图等
2022-11-01 16:34:32 2KB vmd频谱 vmd频谱图 vmd分解 信号分解
1
变分模态分解 信号处理方法 数据序列平稳化。
2022-10-30 11:16:57 8KB vmd vmd_python vmd分解 变分模态
1
VMD.分解程序-将序列分解为多个子序列,用于风速风功率等新能源预测
2022-10-28 12:02:25 804KB vmd分解 能源 风_预测、 风速
1
利用VMD分解,计算每个模态的能量熵的程序。
1
通过中心频率来确定VMD分解个数,程序可以运行
2022-07-09 09:11:52 1.49MB VMD分解个数
信号分解之后的模态分量制作三维图的办法,完全免费,知识就是用来分享的
2022-04-03 10:57:50 2KB 三维图 vmd分解 emd分解
1
变分模态分解算法虽然克服了传统经验模态分解及其改进方法的缺点,但分解前需要设定分解层数K和惩罚因子α ,参数的选择对分解结果的影响很大。本程序利用K-L散度(相对熵)对VMD的参数进行寻优,确定VMD分解信号的K值和惩罚因子alpha。
2021-06-03 13:01:32 1KB 信号处理 VMD分解 相对熵