STM32-USART程序代码是针对STM32微控制器系列中的通用同步/异步收发传输器(USART)功能的编程实例。STM32是一种基于ARM Cortex-M内核的微控制器,广泛应用于嵌入式系统设计,而USART是其进行串行通信的重要接口。 在STM32中,USART不仅支持基本的串行数据传输,还能实现全双工通信、流控功能(如RTS/CTS和XON/XOFF)、多种帧格式和数据位宽度等。通过USART,STM32可以与各种设备如终端、传感器或另一个STM32进行通信。 要理解和使用这些程序,首先需要了解以下几个关键概念: 1. **初始化配置**:在使用STM32的USART前,需要对其进行初始化配置。这包括设置波特率(如9600bps)、数据位(通常8位)、停止位(1或2位)、奇偶校验(无、奇、偶、强制1或强制0)、以及硬件流控的启用或禁用。 2. **中断驱动**:STM32的USART支持中断驱动模式,这意味着当数据接收或发送完成时,可以触发中断服务例程,从而在后台处理通信,提高实时性。 3. **DMA(直接内存访问)**:在高数据传输速率下,使用DMA可以将数据直接从外设传输到内存,无需CPU介入,提高效率。 4. **HAL库**:STM32 HAL库提供了一组易于使用的API,简化了对USART的操作,如`HAL_UART_Init()`用于初始化,`HAL_UART_Transmit()`和`HAL_UART_Receive()`用于发送和接收数据。 5. **RTOS集成**:在实时操作系统环境下,USART操作可与任务调度、信号量等机制结合,确保多个任务间串行通信的同步和互斥。 6. **错误处理**:USART编程中需考虑错误检测,例如CRC错误、帧错误和溢出错误。HAL库提供了对应的错误状态检查函数,如`HAL_UART_GetError()`。 7. **示例代码分析**:在压缩包内的程序中,通常会包含配置USART的头文件,设置GPIO引脚为输入/输出的函数,初始化USART的函数,发送和接收数据的函数,以及可能的中断服务例程。通过对这些代码的阅读和理解,可以掌握STM32如何使用USART进行通信。 STM32-USART程序代码的学习可以帮助开发者更深入地理解STM32的串口通信,从而在实际项目中灵活运用。通过实践和调试这些代码,你可以熟悉STM32的开发环境,如Keil uVision或IAR Embedded Workbench,以及STM32CubeMX配置工具,这对提升嵌入式系统开发能力至关重要。
2025-05-17 16:10:34 290KB STM32-USART
1
**淘晶驰串口屏开发软件USART HMI详解** 淘晶驰串口屏开发软件USART HMI是一款专为实现串口通信人机交互界面(HMI)设计的工具,广泛应用于工业自动化、物联网设备以及各类嵌入式系统中。这款软件提供了一套完整的解决方案,使开发者能够快速、便捷地构建具有串口通信功能的图形用户界面。 **串口通信基础** 串口通信,也称为串行通信,是数据传输的一种方式,通过串行接口将数据一位一位地发送和接收。常见的串口标准有RS-232、RS-485和USB转串口等。USART(Universal Synchronous/Asynchronous Receiver/Transmitter)是一种通用同步/异步收发传输器,支持串行通信协议,通常用于嵌入式系统中。 **USART HMI特性** 1. **易用性**:淘晶驰串口屏开发软件提供了直观的图形化界面,使得开发者无需深入了解底层硬件细节,就能设计出各种复杂的交互界面。 2. **图形设计工具**:软件内含丰富的图形元素库,包括按钮、文本框、图表、图片等,可自由拖放和编辑,创建个性化界面。 3. **脚本语言支持**:支持内置的脚本语言,允许开发者编写逻辑控制程序,实现界面与设备的动态交互,如数据采集、显示更新等。 4. **串口配置**:支持多种串口参数设置,包括波特率、数据位、停止位、校验位等,适应不同硬件设备的需求。 5. **数据通信**:软件能实现与串口设备的双向通信,可以读取设备数据并显示在屏幕上,同时也能将用户的操作指令发送到设备。 6. **项目导出与烧录**:完成设计后,可以将项目导出为固件文件,然后通过编程器或烧录工具将程序写入串口屏硬件。 7. **兼容性**:适用于多种淘晶驰串口屏产品,确保软件与硬件的良好配合。 **应用场景** 淘晶驰串口屏开发软件广泛应用于以下领域: 1. **工业控制**:如PLC、变频器、温控器等设备的监控界面。 2. **能源管理**:如电力监测、能源消耗统计的可视化显示。 3. **智能家居**:如智能安防系统的远程监控和控制。 4. **物联网设备**:如环境监测、物流追踪等数据采集和展示。 5. **车载信息娱乐系统**:实现车辆状态显示和驾驶辅助功能。 淘晶驰串口屏开发软件USART HMI为开发者提供了一个高效、便捷的平台,降低了串口屏应用的开发门槛,提高了项目实施效率。通过熟练掌握这款软件,开发者可以在短时间内创建出功能丰富、用户体验优良的串口通信界面,满足各种行业需求。
2025-05-14 21:22:41 51.4MB
1
PC端通过串口调试助手发送给异步串口接收模块UART_rx.v,完成串并解析后通过wire [7:0] pi_data ;wire pi_flag ;送入同步串口(SSI)发送模块usart_master.v。考虑到同步串口(SSI) 波特率是10Mbps,远大于异步串口波特率是115200bps,因此无需做数据缓存。同步串口参数如表1-1所示,异步串口参数如表1-2所示。开发工具Vivado 2018.3,使用Verilog HDL编写,FPGA器件xc7a100tfgg484。 在现代电子通信系统中,数据传输的接口标准多种多样,而异步串口(UART)和同步串口(SSI)是两种常见的串行通信接口。基于FPGA的RS422异步串口转二线同步串口(SSI)的接口转换工程,是一种利用现场可编程门阵列(FPGA)技术,将低速异步串口通信转换为高速同步串口通信的解决方案。通过这样的转换,可以实现不同通信标准之间的数据互通,对于提升设备的兼容性和扩展性具有重要意义。 在该工程中,使用了Verilog硬件描述语言来编写转换逻辑。Verilog是一种广泛应用于电子系统设计的硬件描述语言,它允许设计者通过文本形式描述数字电路的结构和行为,进而通过EDA工具实现电路设计的仿真和综合。工程中涉及到的关键Verilog文件包括UART接收模块 UART_rx.v 和SSI发送模块 usart_master.v。UART_rx.v 负责接收来自PC端通过串口调试助手发送的异步串口数据,进行串并转换,然后将数据通过特定的信号线pi_data和pi_flag发送给SSI发送模块。SSI发送模块则负责将这些数据通过同步串口发送出去。 在设计中,SSI接口被配置为高速模式,其波特率为10Mbps,而UART接口的波特率为115200bps。由于SSI接口的波特率远大于UART接口,因此在本设计中无需额外的数据缓存。这种速率差异的处理是通过硬件设计中的时序控制和数据流管理来实现的,确保在不丢失数据的前提下,实现快速而稳定的通信。 此外,整个工程是基于Xilinx的Vivado 2018.3开发环境进行开发的,使用的是FPGA器件xc7a100tfgg484。Vivado是一款功能强大的FPGA设计套件,它提供了从设计输入到设备配置的一整套解决方案,能够支持高层次的综合、仿真、时序分析、以及硬件配置等多个环节。xc7a100tfgg484则是Xilinx公司生产的一款Artix-7系列的FPGA器件,具有丰富的逻辑资源和I/O端口,适用于多种应用场景。 在该工程的设计文档中,通常会包括两个接口的参数说明表。表1-1中会详细描述SSI同步串口的工作参数,如波特率、数据位宽、停止位、校验位等,这些参数需要与外部设备的SSI接口参数相匹配。表1-2则会介绍UART异步串口的参数,包括传输速率、帧格式、流控等,这些参数需要与PC端的串口调试助手设置一致。通过这样的参数配置,可以确保数据能够在UART和SSI之间准确无误地传输。 整个工程的实现不仅展示了FPGA在接口转换方面的灵活性和高效性,还体现了在高速和低速通信系统之间进行数据交换时对精确时序控制的需求。此类型项目不仅对于通信系统设计者具有参考价值,对于深入理解FPGA在通信协议转换中的应用也十分有益。
2025-04-10 10:45:08 2.3MB FPGA verilog
1
STM32F103系列微控制器是基于ARM Cortex-M3内核的高效能、低成本芯片,广泛应用于各种嵌入式系统设计。本例程集成了多种关键功能,旨在为开发者提供一个强大的开发平台,帮助他们快速实现项目。以下是各功能模块的详细解释: 1. **FreeRTOS操作系统**:FreeRTOS是一款轻量级实时操作系统(RTOS),适用于资源有限的嵌入式设备。它提供了任务调度、信号量、互斥锁等多任务管理机制,确保了系统的实时性和高效率。在STM32F103上运行FreeRTOS,可以充分利用其多线程能力,实现复杂的软件架构。 2. **MPU6050DMP**:MPU6050是一款六轴惯性测量单元(IMU),集成了三轴陀螺仪和三轴加速度计。DMP(数字运动处理器)是其内置的硬件加速器,可以处理传感器数据融合,提供姿态解算。在本例程中,MPU6050DMP用于获取设备的姿态、角速度和加速度信息,适用于运动控制和导航应用。 3. **USART通信**:通用同步/异步收发传输器(USART)是STM32中的串行通信接口,用于与外部设备进行数据交换。在项目中,USART可能用于设备配置、数据传输或者与其他MCU通信。 4. **Timer输入捕获**:STM32的定时器支持输入捕获模式,可以精确测量输入信号的脉冲宽度或频率。在例程中,这可能用于电机控制、测速或距离测量(如通过计算超声波脉冲往返时间)。 5. **KS103测距模块**:KS103通常是指一款超声波测距模块,利用超声波的反射特性来测量物体的距离。结合Timer输入捕获功能,可以实现精确的距离测量,例如在自动化设备或安全系统中。 6. **烟雾检测**:虽然在描述中提到烟雾检测,但没有提供具体实现的细节。一般而言,烟雾检测可能通过光电传感器或电化学传感器实现,将检测到的信号转化为电信号并处理,以报警或触发其他响应。 这个综合示例涵盖了嵌入式系统开发中的多个关键部分,包括实时操作系统、传感器数据处理、串行通信以及物理世界的测量。对于想要在STM32F103平台上进行复杂项目开发的工程师来说,这是一个宝贵的资源,可以减少重复工作,提高开发效率。通过学习和参考这个例程,开发者能够更好地理解和应用这些技术,解决实际问题。
2025-01-21 16:03:13 10.62MB FREERTOS MPU6050DMP stm32F103 usart
1
UART驱动在嵌入式系统开发中扮演着至关重要的角色,特别是在STM32F030/031这样的微控制器中。UART(通用异步收发传输器)是一种常见的通信接口,用于设备间的串行通信。STM32F030/031系列是意法半导体(STMicroelectronics)推出的一种基于ARM Cortex-M0内核的超低功耗微控制器,广泛应用于各种嵌入式项目中,包括物联网设备、传感器节点和小型控制器。 STM32F030/031内部集成了USART(通用同步/异步收发器),它是UART的一个增强版本,支持全双工通信,可以同时进行发送和接收数据。在基于STM32F030/031的项目中,通常需要编写自定义的UART驱动程序来充分利用这一功能,实现与其他设备的数据交换。 驱动开发主要包括以下关键步骤: 1. **配置GPIO**:我们需要配置与UART相关的GPIO引脚,比如TX(发送)和RX(接收)引脚。这些引脚需要设置为AF(alternate function,复用功能)模式,并选择相应的USART功能。 2. **配置USART**:接下来,需要设置USART的工作参数,如波特率、数据位数、停止位数和校验位。例如,常见的配置是9600bps的波特率、8位数据、1位停止位和无校验位。此外,还需要启用USART时钟并选择合适的时钟源。 3. **中断设置**:在STM32中,可以选择使用轮询模式或中断模式进行UART通信。"6.UART_TXpoll_RXinterrupt"这个文件名可能表示示例包含了两种模式。在轮询模式下,程序会不断检查USART状态,看是否有数据待发送或接收。而在中断模式下,当有数据可用或发送完成时,处理器会收到中断请求,这样可以提高系统的实时性。 4. **发送数据**:通过调用HAL_UART_Transmit()函数(如果使用了HAL库)或者直接操作寄存器,将数据写入USART的发送数据寄存器,然后等待发送完成。 5. **接收数据**:在轮询模式下,通过读取USART的接收数据寄存器获取接收到的数据;在中断模式下,需要在对应的中断服务程序中处理接收事件。 6. **错误处理**:对于可能发生的错误,如帧错误、溢出错误或奇偶校验错误,需要设置错误处理机制。这通常包括清除错误标志、记录错误日志或采取恢复措施。 7. **初始化和关闭**:编写初始化和关闭函数,以便在程序开始和结束时正确地配置和释放USART资源。 Wolf32F031自由评估板是一个用于开发和测试STM32F030/031的平台,它提供了必要的硬件接口和工具,使得开发者能够快速验证UART驱动的正确性和性能。 理解并实现一个有效的UART驱动涉及到对STM32微控制器的深入理解,包括GPIO、时钟系统、中断系统以及USART的工作原理。通过掌握这些知识,开发者可以灵活地设计各种基于STM32的串行通信应用。
2024-08-28 21:09:53 581KB STM32F03 USART 串口
1
STM32F10x_CEC_Lib_V2.0.0是一个专为STM32F1 Consumer Electronics Control (CEC) 功能设计的库,适用于STM32微控制器系列,特别是STM32F10x系列。CEC是高清多媒体接口(HDMI)的一部分,用于在连接的设备之间实现低功耗、低成本的通信。这个库提供了在STM32F10x微控制器上实现CEC功能所需的驱动和示例代码。 CEC是基于I2C协议的简化版本,用于控制和协调多个通过HDMI连接的设备,如电视、蓝光播放器、游戏机等。它允许设备间共享控制信息,如电源状态、设备发现、命令传递等。STM32F10x_CEC_Lib_V2.0.0库包含了必要的API函数,使开发者能够轻松地集成CEC功能到他们的应用中。 该库的主要组成部分可能包括: 1. **驱动层**:这层包含了与STM32F10x硬件寄存器直接交互的函数,用于初始化CEC引脚、配置时钟和中断,以及发送和接收数据。 2. **协议栈**:协议栈实现了CEC通信协议的细节,包括仲裁、错误检测和重传机制,确保数据的可靠传输。 3. **应用接口**:这些API函数允许用户在应用层调用,例如注册回调函数以处理接收到的CEC消息,或者发送特定的CEC命令。 4. **示例代码**:库可能包含示例项目,演示如何在实际应用中使用这些API,帮助开发者快速理解和上手。 5. **文档**:完整的库应该附带详细的技术文档,解释库的使用方法、API功能以及配置选项,帮助开发者更好地理解并利用这个库。 6. **配置工具**:可能提供图形化配置工具,如STM32 CubeMX,帮助用户生成初始化代码,快速设置CEC的相关参数。 7. **STM32F10x**:STM32F10x系列是意法半导体(STMicroelectronics)推出的基于ARM Cortex-M3内核的微控制器,具有丰富的外设接口,包括USART(通用同步/异步收发传输器),可以支持CEC功能。 STM32 CEC库的V2.0.0版本可能包含了一些改进和修复,比如性能优化、兼容性增强或新的特性。开发人员在使用时应详细阅读更新日志,了解新版本的具体变化。 STM32F10x_CEC_Lib_V2.0.0为STM32F10x系列微控制器的CEC功能提供了全面的支持,使得开发基于HDMI CEC的应用变得更加简单和高效。通过这个库,开发者可以构建出能够与其他HDMI设备通信的智能系统,实现更丰富的用户体验。
2024-08-22 10:59:55 1.65MB stm32_usart
1
在嵌入式开发中,USART(通用同步/异步收发传输器)是微控制器(如STM32)与外部设备通信的重要接口。本话题主要探讨如何在STM32等MCU上,利用普冉PY32实现USART串口的不固定长度数据接收以及printf函数的发送重定向。这一功能在很多实际应用中非常实用,例如远程调试、数据传输等。 我们需要了解USART的基本工作原理。USART是一种全双工通信接口,可以同时进行发送和接收数据。在STM32中,我们通常使用中断(Interrupt)或DMA(直接内存访问)来处理数据的接收和发送,以便于处理其他任务而不阻塞主循环。 对于不固定长度的数据接收,关键在于正确地识别数据包的边界。一种常见的方法是定义一个特定的帧结构,比如起始和结束字符,或者包含数据长度字段。在中断服务程序中,当接收到起始字符时,启动接收过程,将接收到的数据存储到缓冲区,并在检测到结束字符或读取到数据长度字段后停止接收。这样可以确保即使数据长度未知,也能完整地接收整个数据包。 接下来,我们讨论printf发送重定向。在C语言中,printf函数通常用于向标准输出(通常是控制台)打印信息。但在嵌入式系统中,没有标准输出的概念,我们可以自定义printf的输出目的地。通过重定向stdio流,我们可以让printf的数据发送到USART串口,实现远程调试信息的输出。这需要我们覆写中的相关函数,如vfprintf,然后在覆写的函数中调用USART的发送函数,将字符数据送出去。 具体实现步骤如下: 1. 定义一个全局的缓冲区,用于存放printf的输出数据。 2. 覆写vfprintf函数,使其将输出数据写入缓冲区而不是标准输出。 3. 创建一个定时器中断或者在空闲时间检查缓冲区,当缓冲区中有数据时,通过USART的发送函数将数据发送出去。 4. 需要注意的是,由于USART发送通常是异步的,因此需要处理好发送队列,避免数据丢失或乱序。 在提供的文件"USART_IT_串口printf重定向+不定长接收(003带库)"中,可能包含了实现上述功能的源代码。代码中可能包括了USART的初始化配置、中断服务程序、printf重定向的相关函数等。通过阅读和理解这些代码,你可以学习到如何在实际项目中实现类似的串口通信功能。 总结来说,实现STM32的USART串口不固定长度数据接收和printf发送重定向,需要理解USART的工作原理、中断服务程序的设计以及stdio流的重定向。这不仅能提高你的嵌入式编程技能,也为开发各种通信应用打下坚实的基础。
2024-08-20 10:44:39 4.08MB stm32
1
STM32H743是意法半导体(STMicroelectronics)推出的一款高性能微控制器,属于STM32H7系列,具备强大的ARM Cortex-M7内核。在这个项目中,我们将探讨如何利用STM32H743的串口(USART)功能,并通过DMA(直接存储器访问)进行数据传输。DMA允许在不占用CPU资源的情况下,实现外设与内存之间的高效数据交换。 串口(USART)是通用同步/异步收发传输器,常用于设备间的通信。在STM32H743上配置串口需要完成以下步骤: 1. **初始化配置**:设置波特率、数据位数、停止位和校验位。这些参数可根据通信协议和需求进行定制。 2. **中断或DMA选择**:这里采用DMA方式,因此需要开启串口的DMA请求,并配置合适的DMA通道。 3. **DMA配置**:创建DMA配置结构体,设定传输方向(发送或接收)、数据宽度、内存到外设或外设到内存模式等。 4. **MPU配置**:内存保护单元(MPU)可以保护内存区域免受非法访问。在使用DMA时,确保MPU配置允许DMA通道访问所需内存区域。 5. **缓存开启**:STM32H743支持数据和指令缓存,开启缓存能提高数据读取速度。配置缓存时,要确保与DMA的使用兼容。 6. **RAM分区**:根据应用需求,可能需要将RAM划分为多个区域,如堆栈、动态内存分配区等。 具体实现时,首先在初始化函数中配置串口和DMA。例如,使用HAL库的`HAL_UART_Init()`和`HAL_DMA_Init()`函数。接着,开启串口的DMA请求,这通常在`HAL_UART_MspInit()`回调中完成,调用`HAL_NVIC_EnableIRQ(DMA_IRQn)`来启用对应DMA通道的中断。 对于MPU配置,可以使用`HAL_MPU_ConfigRegion()`函数,设定访问权限和优先级。开启缓存可能涉及`SCB_EnableDCache()`和`SCB_EnableICache()`函数。分配RAM区域可通过`HAL_RCC_GetSRAMSize()`和`HAL_RCC_GetPCCARDRAMSize()`等函数获取总RAM大小,然后用`__attribute__((section(".mySection")))`这样的内存定位属性进行分配。 在数据传输过程中,启动发送或接收操作,例如通过`HAL_UART_Transmit_DMA()`或`HAL_UART_Receive_DMA()`。当传输完成时,DMA中断会被触发,此时需在中断服务程序中处理完传输状态,更新标志位或者执行其他必要的动作。 在H743_BSP_Validate这个文件包中,可能包含了验证这些功能的示例代码、配置文件以及必要的头文件。用户可以参考这些代码来理解和实现STM32H743的串口DMA驱动程序。为了确保程序正确运行,还需要注意系统时钟配置、异常处理以及串口和DMA的中断优先级设置。 STM32H743的串口DMA驱动涉及到硬件层的串口、DMA和MPU配置,以及软件层的中断处理和内存管理。正确理解并实施这些概念,能够构建高效、可靠的串口通信系统。
2024-07-29 19:35:57 7.16MB STM32H743 DMA USART 串口
1
STM32G070是STM32家族中的一款微控制器,主要应用于低功耗、高性能的嵌入式系统设计。这款芯片集成了多种外设接口,如串口(USART)、定时器(TIMER)和外部中断(EXTI),使得它在物联网、智能家居、传感器网络等领域有着广泛的应用。在"Template.zip"这个压缩包中,很可能是提供了一套基于STM32G070的开发模板,包含了串口收发、外部中断、点灯和定时器等基础功能的实现代码。 1. **串口收发(USART)**:STM32G070支持多个USART接口,用于实现设备间的通信。USART不仅可以进行异步串行通信,还支持全双工操作。配置包括波特率设定、数据位、停止位、校验位等参数。在代码中,你可能会看到初始化USART的函数,例如`void USART_Init(void)`,以及发送和接收数据的函数,如`void USART_SendData(uint8_t data)`和`uint8_t USART_ReceiveData(void)`。 2. **外部中断(EXTI)**:EXTI接口允许STM32响应外部引脚的改变,常用于按键检测或传感器信号处理。EXTI线可以与任意GPIO引脚关联,并且可以配置为上升沿、下降沿或两者触发。在模板中,可能有`EXTI_Config(void)`函数来设置中断触发条件,以及中断服务函数`void EXTI0_IRQHandler(void)`处理中断事件。 3. **点灯(GPIO)**:STM32G070的GPIO端口可以配置为输入或输出,用于控制LED等硬件。点灯操作通常涉及到配置GPIO模式(如推挽输出)、初始化GPIO寄存器,以及设置或清除GPIO状态。在代码中,你可能找到如`void LED_Init(void)`的初始化函数,以及`void LED_ON(void)`和`void LED_OFF(void)`这样的控制函数。 4. **定时器(TIMER)**:STM32G070提供了多个定时器,如TIM1、TIM6等,它们可以用于生成周期性脉冲、计数或定时任务。定时器配置包括预分频器、自动重载值、工作模式等。在模板中,你可能会看到`void TIMER_Init(void)`这样的初始化函数,以及与定时器相关的回调函数,如`void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)`,当定时器溢出时执行。 以上内容是对给定压缩包中的主要功能点的简要介绍。在实际应用中,开发者会根据具体需求对这些功能进行扩展和定制,比如添加错误处理机制、优化中断服务、增加通信协议栈等。对于初学者,理解并掌握这些基本接口的使用是学习STM32开发的关键步骤。
2024-07-03 16:13:14 19.21MB stm32g070 TIMER EXTI USART
1
该代码同时支持stm32 f1 系列 的 三路USART 通道, 全部采用 DMA 自动收发数据, 通过中断返回判断数据是否收发完成。 代码已经测试通过可以,可以直接使用。在移植使用时需要注意,IO口 / 波特率 等信息
2024-06-25 13:36:42 4KB STM32 USART DMA
1