内容概要:本文展示了基于 PyTorch 实现的一个深度学习网络,即集成了坐标注意力(CoordAtt)模块的 U-Net 网络,主要用于医疗影像或者卫星图片等高分辨率图像的分割任务中。文中定义了两种关键组件:CoordAtt 和 UNetWithCoordAtt。CoordAtt 是为了在水平和垂直维度引入空间注意力机制来增强特征提取能力而提出的一种改进方法。具体做法是通过对不同方向进行池化操作并用1x1卷积核调整通道数目与生成最终的注意权值。UNet部分则继承了传统的U形结构思想,在编码和解码过程中不断下采样获得抽象特征以及通过上采样的方式复原到原始尺寸;在每一次编码后的处理步骤和部分解码环节加入 CoordAtt,从而提高了网络捕捉长程依存关系的能力。最后还附有一个简单的测试函数来实例化对象并验证输出正确性。 适用人群:适用于有一定 PyTorch 使用经验的研究者或从业者,对于从事图像处理特别是需要做精确边界定位的应用领域的工作人员来说非常有价值。 使用场景及目标:该架构非常适合于对精度有较高要求但数据样本相对匮乏的情境之下。其目的是解决医学扫描、自动驾驶、遥感图像等领域面临的复杂背景噪声问题,在保证速度的同时提供更为精准的对象分割。 其他说明:本文提供了详细的源代码和注释,有助于深入理解 U-Net 系列变体以及注意力机制的设计思路。同时由于采用模块化的搭建方式也很容易进行参数调优以适配不同的业务需求。
2025-04-21 13:48:25 4KB 深度学习 U-Net PyTorch 图像分割
1
Pascal VOC 2012数据集是计算机视觉领域内一个著名且广泛使用的数据集,它主要被设计用来解决图像理解和计算机视觉中的识别问题。这个数据集包括了20类不同的物体类别,并为每张图片提供了相应的边界框(用于目标检测任务)、分割掩码(用于图像分割任务)以及图像级别标签(用于图像分类任务)。 U-Net模型是一种用于图像分割的卷积神经网络,它特别适合于医学图像分割和其他像素级的预测任务。U-Net的网络结构是对称的,它的设计借鉴了编码器-解码器的概念,通过一系列的卷积层、激活函数和池化层来提取图像的特征,并使用上采样和跳跃连接来重建图像的每个像素位置。U-Net的关键特点在于它的跳跃连接(skip connections),这些连接能够将编码器部分的特征图与解码器对应的层直接相连,从而帮助网络更好地恢复图像细节,这对于分割任务至关重要。 在使用Pascal VOC 2012数据集进行U-Net模型训练时,研究者和开发者通常会关注如何提高模型的准确性,减少过拟合,以及如何提高模型处理数据的速度。此外,数据增强、网络架构的调整、损失函数的选择和优化算法等都是提高分割性能的重要因素。 由于Pascal VOC 2012数据集已经预设了标准的训练集和测试集划分,研究人员可以直接使用这些数据集来训练和测试他们的U-Net模型。数据集中的图像涵盖了各种场景,包括动物、交通工具、室内场景等,这使得训练得到的模型能够具有较好的泛化能力。 除了用于学术研究,Pascal VOC 2012数据集还被广泛应用于商业产品开发中,比如自动驾驶汽车的视觉系统,智能安防监控的异常行为检测,以及在医疗领域内对于CT和MRI扫描图像的分割等。 为了更好地使用这个数据集,开发者通常需要对图像数据进行预处理,比如归一化、裁剪和数据增强等,以改善模型训练的效果。同时,因为U-Net模型在医学图像处理中尤其受到青睐,所以它的一些改进版也被广泛研究,比如U-Net++和U-Net3+,这些模型在保持U-Net原有优势的基础上,进一步提升了对细节特征的捕捉能力。 Pascal VOC 2012数据集与U-Net模型结合,为图像处理任务提供了强有力的工具。开发者可以通过这种结合来解决复杂的图像理解问题,同时也能够在此过程中积累对深度学习模型及其在实际问题中应用的经验。
2025-04-11 20:13:58 37KB
1
深度学习是近几年图像识别领域的一门新兴技术,能够自动学习影像深层次特征 从而进行准确的分类决策,为得到更好的高分辨率遥感影像分类结果带来新的契机
2022-04-18 16:36:47 4.19MB U-net 遥感图像 分类 深度学习
1
在 Keras 中使用Baseline U-Net 模型和图像增强通过语义分割进行烟雾检测 这个 repo 是的部分实现 此用例的主要目的是检测任何背景中的烟雾。 烟雾的来源、颜色、环境等也可能有变化。我们应该能够从语义上分割烟雾以分析它的各种特征,如颜色、强度、烟雾喷射持续时间(来自视频源)等。 master分支具有U-Net的实现,但是在不同分支中提供了使用另一种实现。 优网 U-Net 是一种卷积神经网络,是德国弗莱堡大学计算机科学系为生物医学图像分割而开发的。 该网络基于全卷积网络,其架构经过修改和扩展,可以使用更少的训练图像并产生更精确的分割。 建筑学 图片来源:德国弗赖堡大学计算机科学系 在 Kaggle Airbus 船舶检测挑战中, 使用这个模型从过滤器尺寸 8 开始,从 768x768 图像检测船舶。 但是,我已将它用于从 Google 搜索获得的“烟雾图像”并将其调
2022-01-01 19:40:54 20.69MB unet unet-image-segmentation linknet unet-keras
1
pytorch-3dunet PyTorch实施3D U-Net及其变体: 基于3D U-Net的标准3D U-Net ÖzgünÇiçek等人。 基于残差3D U-Net。 该代码允许对U-Net进行以下方面的训练:语义分割(二进制和多类)和回归问题(例如降噪,学习解卷积)。 二维U网 也可以训练标准2D U-Net,有关示例配置,请参见 。 只需确保将单例z维保留在H5数据集中(即(1, Y, X)而不是(Y, X) ),因为数据加载/数据扩充始终需要3级张量。 先决条件 Linux NVIDIA GPU CUDA CuDNN 在Windows上运行 该软件包尚未在Windows上进行过测试,但是有报告称该软件包已在Windows上使用。 要记住的一件事:在使用CrossEntropyLoss进行训练时:配置文件中的标签类型应该从long更改为int64 ,否则会出现错误:
2021-11-16 15:48:36 30.49MB pytorch unet semantic-segmentation volumetric-data
1
网络 使用MobileNetV2上的转移学习方法在移动环境中进行巩膜分割的U-Net模型 该存储库包含使用Keras和Tensorflow的U-Net架构的实现,其背后支持Tensorflow,以使用转移学习方法对Sclera进行分段。 1-建议的方法 所提出的方法采用了以MobileNetV2类特征为条件的U-Net启发模型来分割眼睛的巩膜和背景,其中对MobileNetV2模型应用了两阶段的微调。 数据通过不同的模型进行了扩充。 在我们的方法中,我们将U-Net [U-Net]与预训练的MobileNetV2 [MobileNetV2]结合使用。 U-Net基于全卷积网络,我们修改了其体系结构以使用较少的训练样本并实现更准确的分段。 我们将MobileNetV2随附的预训练权重用于ImageNet数据集[ImageNet],并在巩膜域上对其进行了微调。 为了提供域适应性,我们根据M(
2021-11-05 16:31:43 9KB Python
1
很多初入深度学习的学生都会遇到各种环境配置问题,环境搭建不好模型就跑不了,所以这是限制新手的一大难点,MATLAB具有成熟的运行环境,无需配置,这点对于想跑通一个深度学习模型的新手是非常有利的。所以,本教程手把手教你使用MATLAB中的深度学习框架,完成遥感影像分类的具体操作步骤。本教程给出完整的代码、操作手擦、原始训练及测试样本,旨在最大限度的简化操作步骤,让深度学习零基础的学生也可以轻松跑通深度学习代码,增加自信心和学习兴趣,为遥感影像分类提供一个可借鉴的新型的方法。
2019-12-21 21:39:56 6.26MB 遥感影像分类 深度学习 U-Net模型 MATLAB
1