3D U-Net卷积神经网络 背景 我们设计3DUnetCNN使其易于应用和控制各种深度学习模型对医学成像数据的训练和应用。 上面的链接提供了有关如何将本项目与来自MICCAI各种挑战的数据一起使用的示例/教程。 依存关系 火炬 Nilearn 大熊猫 凯拉斯 有问题吗? 加入或给我发电子邮件 。 引文 Ellis DG,Aizenberg MR(2021年),尝试使用开源深度学习框架对胶质瘤进行分割的U-Net培训修改。 在:Crimi A.,Bakas S.(eds)脑损伤:脑胶质瘤,多发性硬化症,中风和脑外伤。 《 BrainLes 2020》。计算机科学讲座,第12659卷。ChamSpringer。 https://doi.org/10.1007/978-3-030-72087-2_4 其他引用 Ellis DG,Aizenberg MR(2020)使用通过注册增强的深度
2021-08-20 23:45:34 14MB Python
1
为了准确测量纳米颗粒的尺寸,依据透射电子显微镜拍摄的纳米颗粒图像,提出了一种基于U-Net卷积神经网络的颗粒自动分割方法。将U-Net部分网络结构与批量归一化层相结合,减弱了网络对初始化的依赖,提升了训练速度。对纳米颗粒图像进行半隐式偏微分方程滤波以增强图像边缘信息,利用改进的U-Net网络训练纳米颗粒个体分割模型,得到了分割结果。研究结果表明,所提方法能准确分割出图像中的纳米颗粒,对边缘模糊和强度不均的纳米颗粒的分割效果提升显著。
2021-02-22 10:05:46 8.84MB 图像处理 纳米颗粒 U-Net卷积 半隐式偏
1