内容概要:本文详细讨论了深度学习在时间序列预测领域的研究现状和发展趋势,强调由于物联网等技术的快速发展,传统的参数模型和机器学习算法逐渐难以满足大数据时代的需求。文章首先介绍了时间序列的基本特性、常用数据集和评价指标。然后重点阐述了三大类深度学习算法——卷积神经网络(CNN)、循环神经网络(RNN)及其变体LSTM/GRU、Transformers系列(如Informer、FEDformer和Conformer)的工作原理及其在不同类型的时间序列预测任务中的应用成效和局限性。最后,文章提出了关于超参数优化、适应不规则数据、结合图神经网络以及创新损失函数等方面的未来研究方向。 适用人群:对深度学习有兴趣的专业研究人员和技术开发者,特别是那些从事数据分析、金融建模、物联网应用等领域的人士。 使用场景及目标:帮助读者理解时间序列预测中的现有技术和未来发展的可能性。通过对不同类型预测任务的分析,为相关领域的实际工程项目提供指导和支持。 其他说明:文中引用了多个学术文献作为论据支撑,并提及了一些前沿研究成果,比如通过引入自然优化算法提升预测精度。
1
Shap解释Transformer多分类模型,并且基于shap库对transformer模型(pytorch搭建)进行解释,绘制变量重要性汇总图、自变量重要性、瀑布图、热图等等 因为是分类模型,所以只用到了Transformer的Encoder模块,使用了4层encoder和1层全连接网络的结果,没有用embedding,因为自变量本身就有15个维度,而且全是数值,相当于自带embedding 代码架构说明: 第一步:数据处理 数据是从nhanes数据库中下载的,自变量有15个,因变量1个,每个样本看成维度为15的单词即可,建模前进行了归一化处理 第二步:构建transformer模型,包括4层encoder层和1层全连接层 第三步:评估模型,计算测试集的recall、f1、kappa、pre等 第四步:shap解释,用kernel解释器(适用于任意机器学习模型)对transformer模型进行解释,并且分别绘制每个分类下,自变量重要性汇总图、自变量重要性柱状图、单个变量的依赖图、单个变量的力图、单个样本的决策图、多个样本的决策图、热图、单个样本的解释图等8类图片 代码注释详细,逻辑
2025-09-22 20:43:22 4.78MB xhtml
1
在当今信息高度发达的社会中,人们每天都会接触到大量的信息。由于信息的来源多样性和传播速度的迅速性,不可避免地会产生和传播谣言。谣言不仅会误导公众,扰乱社会秩序,甚至可能会对社会稳定和公共安全造成严重影响。因此,如何快速且准确地检测和识别谣言成为了一个亟待解决的问题。基于Transformer模型的谣言检测系统应运而生,它的出现标志着信息检测技术的一大进步。 Transformer模型是一种深度学习模型,它通过自注意力机制(Self-Attention)来捕捉序列中各个元素之间的关系,从而处理序列数据。该模型最初是在自然语言处理(NLP)领域内大放异彩,尤其是通过其变体BERT(Bidirectional Encoder Representations from Transformers)在多个NLP任务中取得了卓越的性能,包括文本分类、问答系统、文本生成等。由于谣言检测本质上可以被视为一种文本分类任务,因此将Transformer模型应用于谣言检测自然成为了一种理想的解决方案。 基于Transformer的谣言检测系统通常涉及以下几个关键部分:数据预处理、模型构建、训练与评估。数据预处理是系统工作的第一步,涉及到对数据集的清洗和标注。谣言检测的数据集通常包含大量的文本数据,这些数据需要经过分词、去除停用词、进行词干提取等处理。在标注方面,需要有专家对数据集中的文本进行谣言或非谣言的分类标注,这是构建有效模型的基础。 模型构建阶段,研究者会利用预训练的Transformer模型,如BERT,作为谣言检测的基础架构。通过微调(Fine-tuning)预训练模型,使其适应谣言检测这一特定任务。微调过程中,模型的参数会根据谣言检测数据集进行优化调整。为了提升模型的性能,研究者通常会采用一些高级技巧,比如正则化方法、学习率调整策略等。 训练与评估是谣言检测系统开发的重要环节。在训练阶段,模型需要在训练集上进行迭代学习,不断地优化参数以最小化预测结果与真实结果之间的差异。这通常涉及到诸如交叉熵损失函数、Adam优化器等深度学习训练方法。在训练完成后,需要在独立的验证集和测试集上对模型性能进行评估,常用的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1分数等。这些指标能够全面地反映模型在谣言检测任务上的性能表现。 本系统采用PyTorch框架进行开发。PyTorch是一个开源的机器学习库,它提供了强大的张量计算功能,并支持自动微分系统,非常适合用于构建和训练深度学习模型。使用PyTorch,研究者可以方便地构建复杂的数据流图和网络结构,实现高效的模型训练和调试。 该系统的代码实现和数据文件的公开,使得更多的研究者和开发者能够接触和学习该技术。这对于推动谣言检测技术的发展,以及提升大众的信息素养具有重要的意义。通过不断地研究和实践,基于Transformer的谣言检测系统有望在未来的谣言防控工作中发挥越来越大的作用。
2025-06-04 10:20:05 366.8MB Transformer PyTorch
1
《基于Transformer模型构建的聊天机器人-Catalina》 在当今的AI领域,自然语言处理(NLP)技术的发展日新月异,其中Transformer模型的出现无疑是里程碑式的重要突破。Transformer模型由Google在2017年提出,它以其并行化处理能力、高效的注意力机制以及在多个NLP任务上的出色性能,迅速成为了研究者和工程师的首选工具。本项目“基于Transformer模型构建的聊天机器人-Catalina”正是利用这一先进模型,旨在打造一个能够理解并回应人类自然语言的智能对话系统。 Transformer模型的核心在于自注意力(Self-Attention)机制,它打破了传统RNN(循环神经网络)和CNN(卷积神经网络)在序列处理上的限制。自注意力允许模型同时考虑输入序列中的所有元素,而非仅依赖于上下文的局部依赖,这使得模型能够捕捉更复杂的语义关系。此外,Transformer模型还引入了多头注意力(Multi-Head Attention),通过并行计算多个不同注意力权重的子空间,进一步增强了模型对不同信息层次的捕获能力。 在聊天机器人的构建过程中,Transformer模型通常被用作语言模型,负责理解和生成文本。需要对大量的对话数据进行预处理,包括分词、去除停用词、词嵌入等步骤,将文本转化为模型可以处理的形式。然后,使用Transformer进行训练,学习数据中的语言规律。训练后的模型可以根据输入的用户话语,通过自回归方式生成回应,实现与用户的自然对话。 Catalina聊天机器人项目的实现可能包含以下几个关键模块: 1. 输入处理:接收并解析用户的输入,将其转化为模型可以理解的格式。 2. 模型前向传播:使用预训练的Transformer模型进行推理,生成候选回应。 3. 回应选择:根据生成的多条候选回应,结合语境和概率选择最合适的回复。 4. 输出处理:将模型生成的回应转化为人类可读的文本,并呈现给用户。 5. 持续学习:通过对用户反馈和对话历史的学习,持续优化模型的对话能力。 值得注意的是,Transformer模型虽然强大,但训练过程可能需要大量的计算资源和时间。为了减轻这一问题,可以采用预训练模型如GPT或BERT作为基础,再进行微调以适应特定的聊天机器人任务。 总结来说,“基于Transformer模型构建的聊天机器人-Catalina”项目利用了Transformer模型的先进特性,通过深度学习的方式实现了一个能理解并生成自然语言的智能对话系统。这个系统不仅可以提供个性化的交互体验,还能随着与用户互动的增加不断学习和改进,展示了人工智能在聊天机器人领域的巨大潜力。
2025-04-01 13:05:56 28.37MB 人工智能 Transformer
1
这篇文章给大家带来是Transformer在时间序列预测上的应用,这种模型最初是为了处理自然语言处理(NLP)任务而设计的,但由于其独特的架构和能力,它也被用于时间序列分析。Transformer应用于时间序列分析中的基本思想是:Transformer 在时间序列分析中的应用核心在于其自注意力机制,这使其能够有效捕捉时间序列数据中的长期依赖关系。通过并行处理能力和位置编码,Transformer 不仅提高了处理效率,而且确保了时间顺序的准确性。其灵活的模型结构允许调整以适应不同复杂度这篇文章给大家带来是Transformer在时间序列预测上的应用,这种模型最初是为了处理自然语言处理(NLP)任务而设计的,但由于其独特的架构和能力,它也被用于时间序列分析。Transformer应用于时间序列分析中的基本思想是:Transformer 在时间序列分析中的应用核心在于其自注意力机制,这使其能够有效捕捉时间序列数据中的长期依赖关系。通过并行处理能力和位置编码,Transformer 不仅提高了处理效率,而且确保了时间顺序的准确性。定制化训练个人数据集进行训练利用python和pytorch实现
2024-05-27 09:34:37 26.51MB pytorch pytorch 自然语言处理 transformer
1
使用说明 分对话系统和机器翻译两部分 data为数据集 model为训练的模型 translation文件夹下又分了Seq2Seq和transformer两个模型,大家按需查看使用 以transformer文件夹为例,attention.py主要实现了注意力机制,transformer.py实现了transformer的主体架构,data.py为数据的预处理以及生成了词典、dataset、dataloader,readdata.py运行可以查看数据形状,train.py为训练模型,predict.py为预测,config.py为一些参数的定义。 transformer机器翻译的模型是用cuda:1训练的,如果要使用可能需要修改代码 如:gpu->cpu,即在CPU上使用 torch.load('trans_encoder.mdl', map_location= lambda storage, loc: storage) torch.load('trans_decoder.mdl', map_location= lambda storage, loc: storage)
1
图一就是Transformer模型的框架,不过这里的encoder和decoder不再是RNN结构,拆开来看,细节如图二:原始论文里,作者设置了6层encoder与6层decoder结构。至于为什么是6,这就是一个超参数而已,可以根据实际情况设置为其他值。从图二中可以看到,计算流程是:输入的句子经过逐层编码后,最上层的encoder会输出中间结果,这个中间结果在每一层decoder中都会用到。同时decoder的计算也是从下往上进行,直到最后输出预测结果。这里省略的是最下层decoder的输入:如果是训练过程,输入则是真实的目标句子;如果是预测过程,第一个输入开始标识符,预测下一个词,并且把这
2023-12-07 08:45:25 924KB
1
深度学习自然语言处理-Transformer模型.zip
2023-12-07 08:37:08 26.59MB 深度学习 自然语言处理 transformer
1
在这个示例中,我们使用了一个简单的循环进行模型的训练。首先,我们定义了损失函数(这里使用交叉熵损失)和优化器(这里使用Adam优化器)。 然后,我们通过迭代训练数据集中的批次(inputs和labels),完成以下步骤: 清零梯度:使用optimizer.zero_grad()将模型参数的梯度置零,以便进行新一轮的反向传播。 前向传播:将输入序列inputs传递给模型,得到模型的输出outputs。 计算损失:使用定义的损失函数criterion计算模型输出和真实标签labels之间的损失。 反向传播和优化:通过调用loss.backward()进行反向传播,然后使用optimizer.step()更新模型的参数,以最小化损失。 在每个epoch结束后,我们打印出当前epoch的平均损失。 需要注意的是,这只是一个简化的训练示例,实际情况中可能需要进行更多的操作,如验证集评估、学习率调整等。此外,还需要预处理数据、创建数据加载器等步骤,以便将数据传递给模型进行训练。 建议根据具体的任务和数据集,对训练过程进行适当的修改和扩展,以满足实际需求。
2023-10-27 15:29:08 2KB pytorch pytorch transformer
1
基于Visual Transformer的年龄估计 尝试Visual Transformer的有趣项目,花了几天时间。 自动化的年龄和性别估算在许多应用中变得至关重要。 有多种方法可以根据人的声音,面部特征和姿势来预测年龄和性别。 在本文中,将研究基于图像的方法。 该方法需要人脸的二维图像。 这种方法的挑战性问题是,在不受限制的环境中对脸部进行实验时,其性能会大大降低。 另一个问题是基于个人生活方式,遗传和环境的老龄化差异。 简单地说,不同的人年龄不同。 另一个挑战是生物年龄和表观年龄之间的区别。 基于面部图像的方法有两种。 第一个是手工进行的特征提取和分类,第二个使用深度神经网络。 在我们的论文中,我们还提出了用于年龄估计的视觉转换器。 它是最早提出用于面部任务的视觉转换器之一,因此没有预训练的模型。 但是,我们仍然设法在低数据环境中取得一些成果。 未来的步骤将是在较大的面部数据集上对
2023-02-23 20:48:42 250KB JupyterNotebook
1