本文提出了一种适用于高数据速率通信接收机的高效并行符号定时架构。 所展示的架构依赖于经典Gardner循环的修改版本,并具有“多通道流水线”内插器,该符号使符号率比FPGA的时钟率高出几倍,从而最大程度地提高了可实现的吞吐量。 在Xilinx XC7VX690T FPGA上以150MHz时钟速率演示了时序恢复方案,并在4.8GHz采样率ADC上演示了该时序恢复方案,以实现600Msps符号速率的QPSK数据流。 此外,可以观察到,提出的方案仅占用目标FPGA中逻辑,存储和计算资源的2%。 稍作修改,我们的算法就可以适用于其他幅度调制星座,例如8PSK,16PSK或QAM。 ### 使用FPGA实现600Msps QPSK的并行符号时序恢复 #### 摘要 本文介绍了一种高效并行符号时序恢复架构,特别适用于高数据速率的通信接收机。该架构基于经典Gardner循环的一个修改版本,并引入了一个“多通道流水线”插值器,使得符号率可以远高于FPGA的工作时钟频率,从而极大地提升了可实现的吞吐量。本研究在Xilinx XC7VX690T FPGA上以150MHz时钟速率进行了实验验证,并与一个采样率为4.8GHz的ADC结合使用,实现了600Msps QPSK数据流的时序恢复。实验证明,所提出的方案只占用了目标FPGA中的逻辑、存储和计算资源的2%。稍加修改后,该算法还可以应用于其他类型的幅度相位调制星座,例如8PSK、16PSK或QAM。 #### 关键词 符号时序恢复、插值、多通道流水线、FPGA #### 1. 引言 符号同步(即定时恢复)是数字通信接收机中的关键技术之一。其基本原理是从输入的基带数字波形中找到每个符号的最佳抽样位置。通常情况下,抽样率\(f_{\text{smp}}\)被选择为符号率\(R_s\)的整数倍,即\(f_{\text{smp}} = N \cdot R_s\),其中\(N\)为正整数。经典的定时恢复方法,如Gardner循环,在其原始形式下,假设接收机可以执行数字信号处理操作的时钟频率\(f_{\text{clk}}\)至少等于或大于\(f_{\text{smp}}\),这是许多实际数字接收机设计的起点。 然而,随着符号率的提高,意味着信息传输带宽的增加,这对于全球卫星通信系统、无人机(UAV)4K视频传输等众多应用场景来说至关重要。当符号率\(R_s\)提高到某个水平,以至于\(f_{\text{smp}}\)甚至\(R_s\)超过了FPGA的工作时钟频率时,传统的定时恢复方法面临挑战。 #### 2. 并行符号时序恢复架构 为了克服上述限制,本文提出了一种新的并行符号时序恢复架构。这一架构的特点在于利用了改进版的Gardner循环以及多通道流水线插值技术。改进后的Gardner循环能够更准确地估计符号的定时误差,而多通道流水线插值则可以有效降低符号间的干扰,并允许符号率远远超过FPGA的时钟频率。 **2.1 改进的Gardner循环** Gardner循环是一种常用的无数据辅助的定时恢复方法。传统Gardner循环通过检测相邻两个样本之间的相位差来估计定时误差。本文中的改进版Gardner循环进一步优化了相位检测机制,提高了定时误差估计的精度。 **2.2 多通道流水线插值** 多通道流水线插值技术的核心在于将符号的处理过程分解成多个并行的子通道,每个子通道负责一部分数据的处理。这种方法可以显著提高处理速度,同时减少对FPGA资源的占用。通过采用合适的插值算法,可以有效地补偿由于高速采样带来的时延和失真问题。 #### 3. 实验验证 为了验证所提方案的有效性,我们在Xilinx XC7VX690T FPGA平台上进行了实验。该平台工作在150MHz的时钟频率下,与4.8GHz采样率的ADC相结合,成功实现了600Msps QPSK数据流的符号时序恢复。实验结果表明,即使在如此高的数据速率下,方案仍然保持良好的性能,并且仅消耗了目标FPGA中约2%的逻辑、存储和计算资源。 #### 4. 应用扩展性 本研究还讨论了方案的应用扩展性,即如何将此架构应用到其他类型的调制星座中,如8PSK、16PSK或QAM等。这些调制方式虽然在复杂度上高于QPSK,但同样适用于高速数据传输场景。通过适当的修改,本文提出的架构可以很好地适应这些调制方式,从而拓宽其应用场景。 #### 结论 本文提出了一种高效的并行符号时序恢复架构,该架构基于改进的Gardner循环和多通道流水线插值技术,成功地在高数据速率通信接收机中实现了600Msps QPSK数据流的符号时序恢复。实验结果显示该架构不仅性能优越,而且资源消耗极低,具有很高的实用价值。此外,该架构还展示了良好的扩展性,可以应用于其他类型的调制星座,展现出广泛的应用前景。
2025-11-19 20:40:49 1022KB symbol timing recovery interpolation
1
内容概要:本文档由Synopsys发布,旨在为库开发者提供CCS(复合电流源)计时库特征化指南。CCS技术是电子设计自动化行业中首个基于电流建模的解决方案,涵盖时序、噪声和功耗。文档详细描述了CCS计时模型的要求,包括驱动器模型和接收器模型的具体要求。它还介绍了如何进行CCS计时特征化,确保符合Synopsys Galaxy签核平台的后布局RC延迟计算需求。此外,文档讨论了库特征化的关键考虑因素,如电路仿真设置、输入特征化波形、延迟和转换时间阈值点的选择等。最后,文档总结了Library Compiler对CCS计时库的检查要求。 适合人群:具备一定IC设计和库特征化经验的工程师和技术人员,特别是那些需要使用或开发CCS计时库的人。 使用场景及目标:①帮助库开发者创建准确的CCS计时库,用于后布局RC延迟计算;②指导如何选择合适的特征化参数,确保库的精度和可靠性;③解释CCS计时库在PrimeTime中的应用,确保时序分析的准确性。 其他说明:本文档适用于Library Compiler版本X-2005.09-SP3及之后的版本。文档还包括对CCS计时Liberty扩展(2016年6月)的介绍,支持多段接收电容建模,以提高时序分析的准确性。同时,文档提供了详细的错误和警告消息示例,帮助开发者识别和解决问题。
2025-06-25 20:12:00 892KB Timing Library Characterization Synopsys
1
内容概要:本文档由Synopsys发布,主要介绍了用于精确高效单元级延迟计算的CCS(Composite Current Source)Timing模型。随着集成电路设计进入90nm及以下工艺节点,物理效应和设计风格的变化给延迟计算带来了新的挑战。CCS Timing模型通过创建驱动器模型、降阶模型(如Block Arnoldi)和接收器模型来替代实际电路组件,从而实现高精度和快速计算。该模型解决了传统Thevenin和Norton模型在处理高阻抗网络时的局限性,提供了对输入边沿、输出负载、切换方向和单元状态的依赖性的强大捕捉能力。此外,CCS Timing支持多电压域(multi-Vdd)和动态电压频率调节(DVFS)设计,并能进行非线性Vdd缩放。; 适合人群:从事数字集成电路设计和验证的工程师,特别是那些需要进行精确延迟计算和时序收敛的专业人士。; 使用场景及目标:①适用于90nm及以下工艺节点的设计,确保在高阻抗网络下的高精度延迟计算;②支持多电压域和动态电压频率调节设计;③提高时序分析的准确性,减少与电路仿真之间的误差;④优化延迟计算以应对复杂的物理效应和设计风格变化。; 其他说明:文档详细描述了CCS Timing的建模方法、表征过程及其相对于传统模型的优势。同时,还介绍了紧凑型CCS格式和变异感知扩展,以减少数据量并适应工艺变化。读者可参考相关文档获取更多信息。
1
VESA Monitor timming standard
2023-12-28 14:17:12 445KB VESA Monitor timing
1
VESA Timing 不容易找,不错的资料
2023-03-30 14:10:01 1.12MB VESA Timing
1
LogiCORE IP Product Guide
2023-03-24 08:44:41 1.42MB video timing controller
1
BT1120 模块化代码,共享给大家,需要FPGA 实现BT1120 编码或者解码功能绝对有用,包含编码、解码、仿真文件
2023-02-09 17:34:48 5KB bt1120编解码 encodee bt1120 decode
Timingdesigner_92 资源共享,需要拿走。IC 设计使用
2022-11-14 13:35:59 31.89MB Timing
1
特别好的工具, 有需要的拿去
2022-10-26 12:01:45 1.2MB project management 项目 Timing
1
VESA CVT视频参数计算器,输入分辨率和刷新率即可得到需要参数。
2022-10-19 12:50:00 29KB cvt vesa vesa_timing vesa__cvt_算法
1