本文的目的是解释Conditional Tabular GANs的工作原理,因为目前我还没有看到类似这样的文章。 表格数据生成是一个不断发展的研究领域。 CTGANs 论文已成为许多其他机器学习架构的基础,这些架构如今构成了该研究领域的最新技术。 为什么要生成表格数据? 我们都知道如何使用生成对抗网络 (GAN) 生成图像数据。 我们现实中最常用的数据类型是表格数据。 表格数据是结构化的,在训练机器学习模型时通常更容易处理。 然而,虽然文本数据的生成方式和图形数据差不多,但是在生成表格数据时,要制作一个性能良好的模型,实际上会使事情复杂化很多。 本文的目标是了解 CTGAN 的工作原理。 为此,我将首先对 GAN 和表格数据进行简要说明。 然后我将介绍原始 CTGAN 论文中描述的架构。 最后,我将通过一个使用 Python 的示例实现。 回顾 GAN GAN 属于深度学习生成器的分支。 这是一个监督学习问题,我们有一组真实数据,我们希望通过使用生成器来扩充这个数据集。 GAN 学习生成样本与学习样本的分布有着根本的不同 GAN 由两个神经网络:生成器和鉴别器组成。 生成器
2022-12-06 18:27:15 49.44MB 深度学习 GAN 对抗生成网络 图像处理
1
PyTorch Tabular旨在使利用Tabular数据进行的深度学习变得容易,并且现实世界中的案例和研究都可以访问。 库设计背后的核心原则是: 低电阻可用性 轻松定制 可扩展且易于部署 它建立在PyTorch (显然)和PyTorch Lightning等巨头的肩膀上。 目录 安装 尽管安装中包括PyTorch,但最好的推荐方法是从首先安装PyTorch,为您的计算机选择正确的CUDA版本。 一次,您已经安装了Pytorch,只需使用: pip install pytorch_tabular[all] 安装带有额外依赖项的完整库。 和 : pip install pytorch_tabular 裸露的必需品。 pytorch_tabular的源代码可以从Github repo仓库_下载。 您可以克隆公共存储库: git clone git://github.com/ma
1
SQL Server的Tabular Data Stream (TDS)协议是SQL Server的数据传输协议。 英文版 TDS 详细协议说明文档.
2022-07-23 17:41:27 5.2MB tds协议
1
竞赛中,数据集中包括60秒的传感器数据序列进行分类,指示受试者在序列期间是否处于两种活动状态之一。 train.csv : 训练集,包括约26000个60秒的13个生物传感器的记录,供近1000名实验参与者使用 - sequence: 序列,每个序列的唯一id - subject: 受试者,实验中受试者的唯一id - step: 步长,录制的时间步长,以1秒为间隔 - sensor_00-sensor_12: 13个传感器在该时间步的值 train_labels: 标签, csv-每个序列的类标签。 - sequence: 序列,—每个序列的唯一id。 - state:状态,与每个序列关联的状态。这就是你试图预测的目标。 test.csv :测试集。对于12000个序列中的每一个,您都应该预测该序列状态的值。 sample_submission.csv :提交样品,csv-正确格式的示例提交文件。 后继将写一篇关于如何使用数据集的文章,敬请关注。
2022-05-03 17:05:45 171.31MB 机器学习 kaggle sklearn
1
对比学习综述 介绍了对比学习损失InfoNCE的起源 详细介绍了对比学习的起源,发展,从CPC到MAE,从图像到文本SimCSE,再到表格数据Tabular
2022-02-08 12:05:41 3.53MB 对比学习 自监督 综述 表格数据
1
DCNN用于表格数据 这项工作展示了我们在雷德黑德莱克黑德大学数据科学硕士课程的顶峰项目。 该项目使用不同大小范围的表格数据集,包括Connect4,Covertype,EEG,Letter识别,Hepmass-OS,Hepmass-NS,Hepmass-AS和HIGGS。 这项工作的目的是建立一个可用于表格数据的DCNN模型。 但是,众所周知,DCNN在图像分类方面具有出色的性能。 因此,我们决定制作一个将表格数据转换为图像的系统,随后将图像传递给DCNN模型进行分类。 这项研究工作是由很少的研究人员和编程人员执行的。 在所有这些产品中,我们设计的模型迄今为止可以提供最佳性能。 数据集: 我们已经对不同的数据集进行了实验,以检查模型的容量。 其中包括小型数据集(例如虹膜)到大型数据集(例如HIGGS)。 用于培训和测试的数据集分布如下: 方法: 加载数据集(connect4,cove
2021-11-27 17:19:53 28KB JupyterNotebook
1
标签转换器 在 Pytorch 中实现 ,表格数据的注意力网络。 这种简单的架构与 GBDT 的性能相差无几。 安装 $ pip install tab-transformer-pytorch 用法 import torch from tab_transformer_pytorch import TabTransformer cont_mean_std = torch . randn ( 10 , 2 ) model = TabTransformer ( categories = ( 10 , 5 , 6 , 5 , 8 ), # tuple containing the number of unique values within each category num_continuous = 10 , # number of co
1
用于表格数据的GAN 我们深知GAN在现实图像生成方面的成功。 但是,它们可以应用于表格数据生成。 我们将回顾和研究有关表格式GAN的最新论文。 Arxiv文章: 中等职位: 如何使用图书馆 安装: pip install tabgan 要生成新数据以通过采样进行训练,然后通过对抗性训练进行过滤,请调用GANGenerator().generate_data_pipe : from tabgan . sampler import OriginalGenerator , GANGenerator import pandas as pd import numpy as np # random input data train = pd . DataFrame ( np . random . randint ( - 10 , 150 , size = ( 50 , 4 )), col
1
从开源项目 网站: : 文档: : 仓库: : 执照: 发展状况: 概述 CTGAN是用于单个表数据的基于深度学习的合成数据生成器的集合,这些数据生成器能够从真实数据中学习并生成高保真度的合成克隆。 当前,该库论文实现在提出的CTGAN和TVAE模型。 有关这些型号的更多信息,请查阅相应的用户指南: 。 。 安装 要求 CTGAN已在 3.6、3.7上进行开发和测试 从PyPI安装 推荐的安装CTGAN的方法是使用 : pip install ctgan 这将从提取并安装最新的稳定版本。 用conda安装 CTGAN也可以使用安装: conda install -c sdv-dev -c pytorch -c conda-forge ctgan 这将从提取并安装最新的稳定版本。 使用范例 :warning_selector: 警告:如果您只是开始使用综合数据,我们建议您使用SDV库,该库提供
1
自动把 grid风格的数据窗口转成 tabular分割, 自动画线,线的颜色可以修改 , 支持列宽拖动,支持多表头
2021-11-15 08:39:43 61KB PB美化 grid
1