使用Yelp评论进行情感分类python程序源代码TSNE和PCA探索单词表示LSTM模型LinearSVC,BernoulliNB,MLPClassifier 情感分类情感分类是情感分类的项目。(以Yelp审查为输入)资料资源什么是新的3.1探索其他数字特征(而不是仅文本)利用“有用”信息(由yelp提供的属性)进行weighted samples实验使用“均值”处理缺失值2.4伯特转移学习建立和调整bert模型。可视化数据分配2.3改变表达句子向量的方式建立和调整LSTM模型。2.2建立和调整LinearSVC模型。建立和调整BernoulliNB模型。建立和调整MLPClassifier模型。建立和调整LogisticRegression模型。建立和调整DecisionTree模型。2.1使用W2F创建情感分类训练word representation模型使用TSNE和PCA探索单词表示1.1使用tf-idf创建情感分类建立和调整LinearSVC模型。 使用Yelp评论进行情感分类python程序源代码TSNE和PCA探索单词表示LSTM模型LinearSVC,B.zi
2024-05-28 20:19:57 1.52MB python lstm
1
zhwiki-gensim-word2vec The goal of this assignment is to train a Word2Vec using gensim over zhwiki() data and show the result by TSNE. 用Wikipedia的中文数据训练Word2Vec 1 下载数据() 2 解压数据 WikiExtractor 3 数据准备 a. jieba切词 b. 数据清洗、去停用词 c. 繁体化简体 OpenCC 4 用gensim 训练 Word2Vec 5 结果显示 TSNE
2023-02-04 23:32:08 1.02MB JupyterNotebook
1
matlab做T SNE的详细代码微笑 Smile(统计机器智能和学习引擎)是Java和Scala中快速而全面的机器学习,NLP,线性代数,图形,插值和可视化系统。 凭借先进的数据结构和算法,Smile可提供最先进的性能。 Smile涵盖了机器学习的各个方面,包括分类,回归,聚类,关联规则挖掘,特征选择,流形学习,多维缩放,遗传算法,缺失值插补,有效的最近邻搜索等。 Smile有充分的文献记录,请查阅的编程指南和更多信息。 通过将以下内容添加到项目pom.xml文件中,可以通过Maven中央存储库使用这些库。 com.github.haifengl smile-core 1.5.2 对于NLP,请使用artifactIdId smile-nlp。 对于Scala API,请使用 libraryDependencies += "com.github.haifengl" %% "smile-scala" % "1
2022-12-14 23:30:02 119.58MB 系统开源
1
基于WDCNN的轴承故障诊断(含tsne可视化)
2022-10-10 21:05:51 8.66MB 深度学习
1
基于matllab实现的tsne统计算法,在数学建模中效果显著
2022-09-21 22:01:11 82KB tsne tsne算法 统计
PCA和KPCA及TSNE降维及二维三维可视化特征matlab程序包。 代码为博主自己编写,注释超详细,可设置多种参数,自己用直接换数据文件名称即可。 亲测可用,主程序里直接有三种方法对比可视化对比图,直接运行主程序即可! 适用人群:信号处理,机器学习,深度学习研究者对信号进行特征分析以及特征提取。 KPCA核心:用核函数将数据实现非线性映射,然后再使用PCA进行降维 t-SNE数据算法的目的 主要是将数据从高维数据转到低维数据,并在低维空间里也保持其在高维空间里所携带的信息(比如高维空间里有的清晰的分布特征,转到低维度时也依然存在)。 TSNE目的:将高维数据降维并进行可视化,输入的数据为N个样本,每个样本具有M个特征(N_sample,M_feature)。输入的标签(N_sample,)。 基本原理:通过映射变换将每个数据点映射到相应的概率分布上。具体的是,在高维空间中使用高斯分布将距离转换为概率分布,在低维空间中,使用长尾分布来将距离转换为概率分布,从而是的高维度空间中的中低等距离在映射后能够有个较大的距离,使得降维时能够避免过多关注局部特征,而忽视全局特征。
2022-06-27 13:05:19 14.94MB PCA KPCA tsne 特征降维
探索着色t-SNE的方法
2022-06-12 23:32:15 13.8MB Python开发-算法和设计模式
1
机器学习实战项目——无监督聚类&PCA tSNE降维.zip
2022-04-12 09:07:52 1.32MB 机器学习 无监督学习 聚类算法 PCA降维
基于TSNE Pytorch的实现 仅在使用CUDA9.1,Pytorch 0.4.0的Ubuntu18.04上进行了测试 提速 测试环境 中央处理器:
2022-03-19 09:55:10 234KB Python
1