嵌入式TI官方的SYSCONFIG工具下载
2025-03-23 23:58:46 129.69MB
1
本系列教程将结合TI推出的CC254x SoC 系列,讲解从环境的搭建到蓝牙4.0协议栈的开发来深入学习蓝牙4.0的开发过程。教程共分为六部分,本文为第四部分第四部分知识点:第十六节 协议栈LED实验、第十七节 协议栈LCD显示、第十八节 协议栈UART实验、第十九节 协议栈五向按键、第二十节 协议栈Flash数据存储。
2025-01-15 14:32:26 1.36MB 蓝牙BLE TI公司 蓝牙4.0/BLE协议栈开发
1
Arduino_driver_software_for_the_HackEEG_TI_ADS1299_hackeeg-driver
2024-11-15 09:48:10 428B
1
HackEEG_TI_ADS1299_Arduino_shield_hardware_design__hackeeg-shield
2024-11-15 09:47:39 7.27MB
1
TI DSP TMS320F28335 Bootloader升级固件,包含bootloader固件,应用测试固件、上位机升级软件
2024-11-13 09:48:18 2MB 串口升级
1
位同步时钟提取电路设计与实现 位同步时钟提取电路是数字通信系统中的一种重要组件,用于从二进制基带信号中提取位同步时钟频率。该电路的设计和实现对数字通信系统的性能和可靠性具有重要影响。本文将详细介绍位同步时钟提取电路的设计和实现,包括电路组成、工作原理、设计要求和测试结果等方面。 一、电路组成 位同步时钟提取电路主要由基带信号产生电路、无限增益多路负反馈二阶有源低通滤波器、位同步时钟提取电路和数字显示电路四部分组成。其中,基带信号产生电路用于模拟二进制数字通信系统接收端中被抽样判决的非逻辑电平基带信号;无限增益多路负反馈二阶有源低通滤波器用于对m 序列输出信号进行滤波和衰减;位同步时钟提取电路用于从 A 信号中提取出位同步时钟;数字显示电路用于数字显示同步时钟的频率。 二、工作原理 位同步时钟提取电路的工作原理是通过对基带信号的滤波和衰减,提取出位同步时钟信号,并将其数字显示出来。在该电路中,m 序列发生器的反馈特征多项式为1)(2348xxxxxf,其序列输出信号及外输入 ck 信号均为 TTL 电平。无限增益多路负反馈二阶有源低通滤波器的截止频率为 300kHz,对m 序列输出信号进行滤波,并衰减为峰-峰值 0.1V 的基带模拟信号(A 信号)。 三、设计要求 位同步时钟提取电路的设计要求包括: 1. 设计制作“基带信号产生电路”,用来模拟二进制数字通信系统接收端中被抽样判决的非逻辑电平基带信号。 2. 设计制作 3dB 截止频率为 300kHz 的无限增益多路负反馈二阶有源低通滤波器,对m 序列输出信号进行滤波,并衰减为峰-峰值 0.1V 的基带模拟信号(A 信号)。 3. 当 m 序列发生器外输入 ck 信号频率为 200kHz 时,设计制作可从 A 信号中提取出位同步时钟(B 信号)的电路,并数字显示同步时钟的频率。 4. 改进位同步时钟提取电路,当 m 序列发生器外输入 ck 信号频率在 200kHz~240kHz 之间变化时,能从 A 信号中自适应提取位同步时钟,并数字显示同步时钟的频率。 5. 降低位同步时钟(B 信号)的脉冲相位抖动量 Δ,要求maxΔ≤1 个位同步时钟周期的 10%。 四、测试结果 位同步时钟提取电路的测试结果包括: 1. 基带信号产生电路的输出信号幅值和频率。 2. 无限增益多路负反馈二阶有源低通滤波器的截止频率和衰减幅值。 3. 位同步时钟提取电路的输出信号幅值和频率。 4. 数字显示电路的输出信号幅值和频率。 五、结论 位同步时钟提取电路是数字通信系统中的一种重要组件,用于从二进制基带信号中提取位同步时钟频率。该电路的设计和实现对数字通信系统的性能和可靠性具有重要影响。本文对位同步时钟提取电路的设计和实现进行了详细的介绍,包括电路组成、工作原理、设计要求和测试结果等方面。
2024-10-28 21:11:46 236KB
1
磷酸铁锂(LiFePO4)电池因其高安全性和长寿命而被广泛应用于电动车和储能系统。然而,它们的电压平台相对平坦,导致使用传统的电压积分方法对电池状态估计时,其精度相对较低。德克萨斯仪器公司(Texas Instruments,简称TI)开发的阻抗跟踪电池电量计技术通过分析电池的内阻特性来提供对电池状态的精确估计,这种方法尤其适用于磷酸铁锂电池。 阻抗跟踪技术的核心在于通过电池使用时间来确定电池的剩余电量(State of Charge,简称SOC)。其算法利用了电池的阻抗模型,能够对电池容量(Qmax)进行动态跟踪,从而适应电池老化过程中容量的变化。在某些应用场合,例如电动车辆或太阳能储能系统,电池可能很少有机会进行完全放电,这就需要一种更实用的浅放电(Shallow Discharge)Qmax更新方法。 为了实现浅放电下的Qmax更新,需要满足两个条件:需要在电池的不合格电压范围以外进行两个开路电压(OCV)的测量。不合格电压范围是指电池因内阻等原因导致电压测量不准确的区域,一般与电池的化学属性和状态有关。这些范围通常由电池制造商或标准测试方法给出,如表1所示。测量期间电池的通过电荷量必须至少达到其总容量的37%,以便电量计能够准确地进行库仑计数,进而更新Qmax。 在实际操作中,由于磷酸铁锂电池的稳定电压平台,要找到一个狭窄的OCV测量窗口以避免不合格电压范围是非常具有挑战性的。例如,对于化学ID编码为404的电池,其不合格电压范围可能从3274mV到3351mV。因此,设计人员可能需要调整OCV的等待时间,以及电池正常工作温度和最大充电时间等参数,从而在满足特定条件的范围内进行Qmax更新。 此外,为了适应不同容量的电池组,比如从3s2p(两组三串联)配置改变到3s1p配置时,电池组的总容量会减半。为了保持电量计的准确性和适应性,可能需要对数据闪存参数进行微调。这意味着,对于使用较小容量电池组的系统,电量计评估软件中的参数设定可能需要根据实际电池的特性来调整,以便在特定条件下实现最佳性能。 在微调过程中,可能需要考虑多种因素,如电池的放电速率、检测电阻器的精度、SOC与OCV的关联误差等。例如,如果设计人员能够将浅放电更新的不合格电压范围调整得更高,那么就可能利用一个较低误差的中间范围来执行Qmax更新。这样做的好处是能够提高SOC更新的准确度,但同时也增加了对电池状态监控系统的复杂度。 最终,为了提高电量计在不同操作条件下的适应性,TI提供了对电量计的软件进行微调的能力。这使得设计人员可以根据特定应用场合的需求来调整电量计的参数,从而达到最佳的性能。然而,这种微调需要对电池化学特性、电量计工作原理以及电池管理系统有深入的理解。因此,这通常需要电池制造商或系统设计人员与电量计的制造商紧密合作,确保电量计能够适应并准确地监测磷酸铁锂电池的SOC。
2024-09-14 13:53:30 210KB 电池|模块
1
2010阿里巴巴&德州仪器TI笔试题,用照片照的
2024-09-11 17:22:17 1.47MB 阿里巴巴&TI笔试题
1
### TI2594 使用详解 #### 一、概述 TI2594 是由德州仪器(Texas Instruments,简称TI)推出的一款高性能的微波相位锁定环(PLL)及合成器系列的一部分,该系列主要面向对性能有极高要求的应用场景。在TI2594的介绍中,我们可以看到它具有多项特性,旨在满足从工业雷达到测试设备,从微波到毫米波等不同应用领域的特定需求。 #### 二、产品特点与应用场景 ##### 2.1 特性 - **多PLL同步功能**:能够实现多个PLL之间的同步工作,确保系统的一致性和稳定性。 - **消除整数边界杂散**:通过简单的编程即可有效减少或消除整数边界杂散,提高信号纯净度。 - **精细延迟调整的 SYSREF 生成**:用于时钟同步JESD204B标准的数据转换器,提供更精确的时序控制。 - **频率斜坡生成**:支持生成连续变化的频率斜坡信号,适用于调制解调等应用。 - **FSK 调制支持**:内置对FSK(频移键控)调制的支持,增强了产品的灵活性。 - **集成 LDO 电源管理**:集成了低噪声的LDO稳压器,简化了电源设计并降低了功耗。 ##### 2.2 应用场景 - **工业雷达**:适用于高精度雷达系统,如交通监控、安防监测等。 - **测试与测量设备**:如频谱分析仪、矢量信号发生器等,需要高稳定度和纯净度的信号源。 - **无线基站**:包括5G基站、微基站、中继站等,要求高性能的射频前端。 - **无线麦克风**:要求小型化、低功耗的设计方案。 - **移动无线电通信**:如对讲机、卫星电话等便携式设备。 #### 三、LMX2594 深入解析 LMX2594作为该系列中的一个明星产品,具备出色的性能指标。其核心特性如下: - **极低的相位噪声**:LMX2594在1GHz载波频率下,在10kHz偏移处的相位噪声可低至-129 dBc/Hz,表现出色。 - **宽频带范围**:支持高达15GHz的频率范围,满足了微波乃至毫米波频段的应用需求。 - **高度集成**:将多个VCO集成在一起,实现了更高的集成度和更低的成本。 - **灵活的编程选项**:用户可以通过编程来定制不同的工作模式,以适应各种应用场景的需求。 #### 四、产品系列概览 TI针对不同的应用领域提供了丰富的PLL及合成器产品线,涵盖了从高性能工业雷达到低功耗移动无线电通信等广泛的应用场景。例如: - **LMX25xx系列**:集成PLL和VCO,适用于需要高性能和高集成度的场合。 - **LMX24xx系列**:专注于PLL解决方案,适用于对功耗敏感的应用场景。 - **LMX2571、LMX2581E、LMX2541**等新产品或即将推出的产品,进一步扩展了TI在PLL及合成器领域的技术覆盖范围。 #### 五、总结 TI2594以其卓越的性能和广泛的适用性,在射频芯片领域占据了重要的地位。无论是对于需要高性能的工业雷达还是对功耗有严格限制的移动无线电通信设备,TI2594都能提供可靠的解决方案。随着5G技术和毫米波应用的不断发展,TI2594及其系列产品将在未来继续发挥重要作用,为无线通信领域的发展贡献力量。
2024-09-05 14:29:28 5.2MB TI2594 射频芯片
1
### TINA-TI使用说明(中文):详细解读与应用指南 #### 概览 TINA-TI是一款由德州仪器(TI)与DesignSoft合作开发的强大电路设计与仿真工具,特别适合于模拟电路和开关模式电源(SMPS)电路的设计与测试。这款软件凭借其强大的分析能力、直观易用的图形界面以及用户友好的特性,在短时间内即可让新用户上手,进行电路仿真的创建。TINA-TI不仅涵盖了基本的电路设计功能,还提供了高级的分析能力,适用于各种复杂电路架构的设计。 #### 原理图编辑器 TINA-TI的核心组件之一是其原理图编辑器,允许用户轻松绘制和修改电路图。通过简洁的用户界面,用户可以快速选择和放置各种主动和被动元件,包括电阻、电容、晶体管等,并利用自动布线功能将元件连接起来。这一过程极大地简化了电路设计的前期工作,使用户能够专注于电路的功能和性能优化。 #### 构建电路 在构建电路时,TINA-TI提供了一个直观的环境,用户可以通过拖放元件到编辑器中,然后使用鼠标或键盘快捷键来连接它们。软件的智能布线系统能够自动识别并连接引脚,减少错误的可能性。此外,TINA-TI还支持从库中选择各种预定义的元件,包括模拟和数字元件,以及自定义元件的导入,满足不同设计需求。 #### 分析能力 TINA-TI的分析功能非常强大,支持多种类型的电路分析,如直流分析(DC Analysis)、交流分析(AC Analysis)、瞬态分析(Transient Analysis)、傅立叶分析(Fourier Analysis)等。这些分析工具可以帮助用户深入了解电路的行为,验证电路设计的正确性,以及优化电路参数。例如,直流分析可用于检查电路的静态工作点,而瞬态分析则用于观察电路在动态条件下的响应。 #### 测试与测量 软件内置的虚拟仪器功能,如示波器、信号发生器、万用表等,使用户能够在仿真环境中进行各种测试和测量操作。这有助于用户在无需实际硬件的情况下,就能对电路进行详尽的测试和故障排查,大大提高了设计效率。 #### 额外协助 TINA-TI提供了丰富的帮助文档和教程,覆盖了从软件安装到高级电路设计的所有方面。对于遇到困难的用户,还可以通过在线社区、官方论坛或技术支持获取进一步的帮助。此外,软件中的上下文敏感帮助功能,能够根据用户当前的操作提供相关的指导和建议,使得学习过程更加顺畅。 TINA-TI作为一款综合性的电路设计与仿真工具,其强大的功能和易用性使其成为电子工程师和设计师的理想选择。无论是初学者还是经验丰富的专业人士,都能从TINA-TI中获得巨大的价值,提高工作效率,加速产品开发周期。
2024-08-25 10:07:51 1.77MB TINA-TI
1