IGBT以其输入阻抗高,开关速度快,通态压降低等特性已成为当今功率半导体器件的主流器件,但在它的使用过程中,精确测量导通延迟时间,目前还存在不少困难。在介绍时间测量芯片TDC-GP2的主要功能和特性的基础上,利用其优良的特性,设计一套高精度的IGBT导通延迟时间的测量系统,所测时间间隔通过液晶显示器直接读取,是一套较为理想的测量方案。 关于IGBT(绝缘栅双极型晶体管)的导通延迟时间精确测量方法,这个问题在功率电子技术领域具有重要意义,因为IGBT作为功率半导体器件的主流选择,其开关速度、导通延迟等特性直接影响到系统性能。在某些高速、高精度的应用中,如电力变换、电机控制等,对IGBT的导通延迟时间要求非常严格。 传统的测量方法可能无法满足高精度的需求,因此,引入了时间测量芯片TDC-GP2,这是一种由德国ACAM公司研发的高精度时间间隔测量芯片。TDC-GP2以其卓越的精度、小巧的封装和适中的成本,成为了实现IGBT导通延迟时间精确测量的理想选择。该芯片内部结构包括脉冲发生器、数据处理单元、时间数字转换器、温度测量单元、时钟控制单元、配置寄存器和SPI接口,可以实现对微小时间间隔的精确捕捉和计算。 TDC-GP2的工作原理是基于内部模拟电路的传输延迟,通过START和STOP信号之间的非门传输时间来测量时间间隔。为了减小温度和电源电压变化带来的影响,芯片内置了锁相电路和标定电路,以提高测量的稳定性和精度。其分辨率高达50 ps,测量范围从2.0 ns到1.8 μs,支持上升沿或下降沿触发,并具备强大的停止信号生成功能。 测量IGBT的导通延迟时间,首先需要获取控制信号、驱动信号和导通电流信号,然后通过信号处理隔离电路输入到TDC-GP2。控制信号作为START输入,驱动信号和导通电流信号分别作为STOP1和STOP2输入。通过分析START与STOP1、START与STOP2之间的时间差,即可得到IGBT的导通延迟时间。 设计的测量系统硬件主要包括脉冲信号取样器、信号整形电路、TDC-GP2测量电路、单片机、液晶显示、电源和时钟电路。TDC-GP2的每个测量通道都有独立的使能引脚,可以根据需要选择测量通道。系统软件设计则涉及到测量单元的启动和停止逻辑,通过环形振荡器和计数器计算时间间隔,最终在液晶显示器上显示测量结果。 这种基于TDC-GP2的测量方案,相较于传统方法,具有外围器件少、电路结构简洁和功耗低的优势,对于提升IGBT导通延迟时间的测量精度和效率具有显著效果,是嵌入式开发和功率电子技术领域的一个重要进展。
2025-05-07 22:50:54 83KB 延迟时间 TDC-GP2 电路设计
1
基于stm32的超声波液体流量计设计.pdf 毕业设计论文
2025-03-29 10:35:17 3.29MB stm32 超声波流量计 tdc-gp2
1
针对鼠笼式异步电机四象限运行控制问题,建立了网侧变流器和机侧变流器的数学模型,给出了网侧变流器和机侧变流器的控制方法,并分别求取了网侧和机侧控制器,网侧采用电压外环电流内环双闭环控制,机侧采用SVPWM调制的直接转矩控制。系统实现了直流母线电压稳定,网侧功率因数为1,能量双向流动,电机四象限运行及电机转速跟踪快速且准确等控制目标。
2024-06-01 02:28:10 921KB 背靠背变流器 SVM-DTC
1
本资源包含TDC-GP22的使用手册,TDC芯片寄存器的官方配置,本人基于stm32写的TDC-GP22寄存器配置程序,TDC-GP22的接线图和一个用文档方式写的注意事项
2023-09-13 08:09:35 12.6MB TDC--GP22 stm32 tdc--gp22
Vivado工程,Carry4实现TDC,精度较高
2023-05-30 15:09:39 9.51MB fpga
该附件包含了市面上常用的TOF芯片的数据手册与参考程序,有TI的TDC7200和TDC7201,以及ACAM公司的TDC-GP22芯片。 可用于TOF激光雷达、超声水表以及其他需要精密测时的领域。
2023-04-12 15:01:30 51.17MB 嵌入式 TDC
1
本设计通过赛灵思的XC7A35T控制Asm公司的TDC-GPX2芯片进行时间间隔测量,设计中对于寄存器配置、SPI通信以及测量脉冲模拟都有讲述,结合本人的三篇博客可以轻松实现项目设计。以下附上介绍链接: https://blog.csdn.net/qq_46284844/article/details/129242363?spm=1001.2014.3001.5501 如有朋友需要,欢迎下载。 注:该系列第三篇附有百度网盘的下载链接。
2023-03-01 14:52:47 46.79MB fpga
1
matlab精度检验代码ZYNQ时间数字转换器 Red Pitaya Zynq-7010 SoC中的快速高分辨率时间数字转换器 作者:米歇尔·亚当尼克(Michel Adamic) 表现核心频率:350 MHz 延迟线抽头数:192(可配置) 每个通道的时间分辨率:> 11 ps 精度:<10 ppm DNL:-1至+4.5 LSB INL:+0.5至+8.5 LSB 测量范围:47.9毫秒死区时间:〜14 ns 最高速度:〜70 MS / s 档案 贸易发展局主项目,包含AXI TDC内核的设计。 使用VHDL源文件和3个Vivado配置的Xilinx IP(BRAM,BRAM控制器,AXI GPIO)。 需要包含“ MyPkg.vhd”。 AXI_TDC_IP Vivado创建的临时项目,用于将TDC打包到IP内核中。 TDC系统包含Zynq PS和多个TDC内核的顶层模块设计。 时钟:AXI互连期望100 MHz。 对于TDC内核,MMCME将其提高到350 MHz。 外部端口:每个TDC通道的命中信号。 模块“ testUnit”是用于测试的方波发生器,可以将其删除。 TDC
2023-02-26 14:56:10 901KB 系统开源
1
利用Carry4进行高精度TDC设计,其MATLAB测试分析代码
2023-02-16 10:55:04 405KB Carry4 fpga matlab
1
基于XC7A35T,Vivado工程文件
2023-02-02 10:25:56 9.87MB TDC
1