插槽填充 使用RNN和ATIS数据进行插槽填充。 要求 Python3.6 火炬进度条 数据集 航空旅行信息系统(ATIS)数据集。 这是一个示例句子及其来自数据集的标签: 表演 航班 从 波斯顿 至 新的 约克 今天 Ø Ø Ø B部门 Ø B-arr - B日期 结果 双GRU 精确 记起 F1 动车组 99.77 99.83 99.8 测试集 94.78 94.75 94.76
1
Spoken Language Processing(黄学东,洪小文)
2023-02-02 06:51:09 7.86MB Spoken Language Processing
1
口语数字识别 :studio_microphone: LSTM语音数字识别 内容 概述 语音数字识别是一个隔离的单词识别系统,可转录0-9之间的各个语音号码。 数据集 使用免费语音数字数据集(FSDD)来训练该模型,该模型具有来自3位讲英语且带有重音的扬声器的1,500张录音。 该模型接受了1,470张唱片的训练,并在30张唱片上进行了测试。 模型与训练 该模型包括: LSTM层 全连接层 损失函数:分类交叉熵 优化算法:亚当 模型在300个时代进行了训练。 改进和要添加的功能 数据集需要更多不同类型的发言人,包括不同性别和不同口音的人,以便该系统在世界范围内正常运行 模型本身可以改进 使用更好的培训/测试策略 具有使用自己的声音来测试模型的界面,使前端易于与模型进行交互 改善模型性能 基本上,这是我的实验,旨在了解如何构建仅检测语音数字的语音识别系统。 用法 python spoke_digit.py为了运行
1
American Accent Training
2022-03-07 16:22:30 2.21MB Spoken English
1
它包含一个命名的录音目录,您可以在其中找到从 0 到 9 的数字的各种录音。 Spoken Digit Dataset_datasets.txt
2022-02-03 11:34:38 240B 数据集
1
语音识别 spoken language processing
2021-12-27 16:31:22 10.82MB 语音识别
1
语音识别系统 适用于 CMU 课程 11756/18799d/J1799d THEORY AND PRACTICE OF SPEECH RECOGNITION SYSTEMS 作者 Shitao Weng : Zhi Liu : 基于 HMM 的顺序数字识别系统。
2021-12-13 12:34:20 257KB C++
1
Spoken Language Processing A Guide to Theory Algorithm+and System Develop
2021-11-27 17:24:35 10.82MB SpokenLang Algorithm System
1
FastWER 用于快速字/字符错误率 (WER/CER) 计算的 PyPI 包 快速(cpp 实现) 句子级和语料库级 WER/CER 分数 安装 pip install pybind11 fastwer 例子 import fastwer hypo = [ 'This is an example .' , 'This is another example .' ] ref = [ 'This is the example :)' , 'That is the example .' ] # Corpus-Level WER: 40.0 fastwer . score ( hypo , ref ) # Corpus-Level CER: 25.5814 fastwer . score ( hypo , ref , char_level = True ) # Sentence-Leve
1
spoken_numbers_pcm
2021-11-05 10:30:40 37.71MB 语音识别 数据集
1