适用于样本不均衡的数据,可提高模型的性能。
2024-03-22 21:37:44 3KB matlab
1
传统的支持向量机(SVM)算法在数据不均衡的情况下,分类效果很不理想。为了提高SVM算法在不均衡数据集下的分类性能,提出随机下采样与SMOTE算法结合的不均衡分类方法。该方法首先利用随机下采样对多数类样本进行采样,去除样本中大量重叠的冗余样本,使得在减少数据的同时保留更多有用信息;而对少数类样本则是利用SMOTE算法进行过采样。实验部分将其应用在UCI数据集中并同其他采样算法比较,结果表明文中算法不但能有效提高SVM算法在不均衡数据中少数类的分类性能,而且总体分类性能也有所提高。
1
SMOTE算法在不平衡数据中的应用.pdf
2022-07-09 19:09:04 793KB 文档资料
MapReduce 使用 Hadoop 实现随机过采样、随机欠采样和“合成少数过采样技术”(SMOTE)算法 大数据的随机过采样:MapReduce 的近似 随机过采样 (ROS) 算法已适应于遵循 MapReduce 设计来处理大数据,其中每个 Map 进程负责通过少数类实例的随机复制来调整映射器分区中的类分布,Reduce 进程负责收集每个映射器生成的输出以形成平衡数据集。 该过程如图 1 所示,包括四个步骤:初始、映射、缩减和最终。 图 1:ROS MapReduce 设计如何工作的流程图。 大数据的随机欠采样:按照MapReduce程序选择样本 适用于处理大数据的随机欠采样 (RUS) 版本遵循 MapReduce 设计,其中每个 Map 进程负责按类对其数据分区中的所有实例进行分组,Reduce 进程负责收集每个映射器的输出并平衡通过随机消除多数类实例来形成平衡数据集的类分布。
2022-04-07 14:50:47 501KB Java
1
最新BorderlineSMOTE算法,是对SMOTE的继承
2022-03-01 13:35:27 3KB SMOTE算法
1
本资源内主要包括smote样本增加算法,另外含有上采样和下采样算法,都是用matlab编写的。
2022-02-17 15:58:48 36KB Smote算法 Matlab程序
1
针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使用交叉、变异算子实现对合成样本质量的控制。结合GA-SMOTE与SVM(support vector machine)算法来处理不平衡数据的分类问题。UCI数据集上的大量实验表明,GA-SMOTE在新样本的整体合成效果上表现
2022-02-07 10:02:28 453KB 工程技术 论文
1
已有入侵检测模型普遍只针对网络入侵行为的静态特征进行分析检测,造成检测率低及误报率高等缺陷,且无法有效应用低频攻击。为此提出一种新的基于深度循环神经网络(DRNN)和区域自适应合成过采样算法(RA-SMOTE)的组合式入侵检测模型(DRRS)。首先,RA-SMOTE 对数据集中低频攻击样本进行自适应区域划分,实现差别样本增量,从数据层面提升低频攻击样本数量;其次,利用 DRNN 特有的层间反馈单元,完成多阶段分类特征的时序积累学习,同时多隐层网络结构实现对原始数据分布的最优非线性拟合;最后,使用训练好的DRRS模型完成入侵检测。实验结果表明,相比已有入侵检测模型,DRRS在改善整体检测效果的同时显著提高了低频攻击检测率,且对未知新型攻击具有一定检出率,适用于实际网络环境。
1
如何处理样本不均衡的问题,不局限于上采样或者下采样,还有一种是smote生成少数类的样本,但是传统的smote具有一定的局限性,本论文可以提供一些参考和解决的思路。
2021-10-27 10:43:42 454KB BoderLine SMOTE
1
基于BP-神经网络与SMOTE算法的上市公司财务数据造假分析.pdf
2021-09-25 17:05:50 1.55MB 神经网络 深度学习 机器学习 数据建模