是用于高光谱遥感影像分类的机器学习脚本,其中使用了MLP算法(Multilayer Perceptron Algorithm)对Salinas数据集进行分类。 Salinas数据集是一个常用的高光谱遥感影像数据集,包含了来自13种不同作物和地物的224个像素。在你的Python脚本中,使用了MLP算法对这些像素进行分类。MLP算法是一种基于神经网络的分类算法,其通过多层神经元对特征进行抽象和表达,从而实现高效的分类。在该算法中,使用了反向传播算法对网络进行训练,以便调整网络中的权重和偏置,从而提高分类的准确性。
1
使用SVM、随机森林及K-NN进行高光谱图像分类,内置Indian_pines、PaviaU、Salinas数据集及其标签
2022-05-28 19:07:04 65.53MB 支持向量机 随机森林 分类 文档资料
1
The Salinas数据集,是常用的高光谱数据集之一,为.mat文件,方便进行高光谱图像分类的研究。
2022-04-05 00:20:28 25.3MB 高光谱图像
1
很实用的用于高光谱遥感图像分类Salinas数据集,欢迎下载
2021-11-26 20:23:55 26.31MB Salina 高光谱遥感数 高光谱 遥感
1
图像分类 高光谱数据集
2021-11-01 18:10:39 12.71MB matlab 高光谱
1
该包提供了遥感图像分析中常用的Salinas数据集,为mat格式,包括各波段信息,及对应的地面真实数据的标签。
2021-10-31 15:47:40 54.61MB Salinas;
1
Salinas 是由 AVIRIS 传感器拍摄,拍摄地点是加州 Salinas Valley。这个数据的空间分辨率是3.7米,大小是512*217。原始数据是224个波段,去除水汽吸收严重的波段后,还剩下204个波段。这个数据包含了16个农作物类别。
1
包括Salinas和Salinas-A This scene was collected by the 224-band AVIRIS sensor over Salinas Valley, California, and is characterized by high spatial resolution (3.7-meter pixels). The area covered comprises 512 lines by 217 samples. As with Indian Pines scene, we discarded the 20 water absorption bands, in this case bands: [108-112], [154-167], 224. This image was available only as at-sensor radiance data. It includes vegetables, bare soils, and vineyard fields. Salinas groundtruth contains 16 classes.
2021-08-01 17:39:30 54.65MB 高光谱 遥感 数据库 Salinas
1
常见的高光谱数据集-Botswana、HoustonU、Idian_pines、KSC、Pavia、Salinas、Xiong'an、Xuzhou,包含光谱数据以及标注信息,伪色彩图和标注图像,格式均为.mat格式。由于文件超过上传限制,所以使用是百度云盘。
2021-07-12 11:08:59 124B 高光谱 遥感图像 数据集 深度学习
1
资源包括99.9%的常用的实验高光谱图像数据,全部是.mat文件,到手即用(数据集和标签都有,部分还有的图像)数据集包括:Indian pines,pavia university,pavia center,botswana,Houston_2013,Houston_2018,KSC,Salinas,xuzhou,xiongan,由于数据量过大,本资源提供百度云链接,请自行下载
2021-02-24 10:19:08 237B HSI数据集 Indianpines Houston Salinas
1