基于PaddleDetection中SSD算法实现的火焰识别检测源码+数据集+训练好的模型 配置文件都配置好 数据集都配置好,有数据配置脚本,执行一下即可。 训练好的模型,数据集 备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
基于改进SSD算法(SE+特征融合)的苹果叶病虫害识别系统源码(pytorch框架)+改进前源码+病害数据集+项目说明.zip 主要改进点如下: 1、替换backbone为Resnet/MobileNet 2、添加一种更加轻量高效的特征融合方式 feature fusion module 3、添加注意力机制 (Squeeze-and-Excitation Module 和 Convolutional Block Attention Module) 4、添加一种解决正负样本不平衡的损失函数Focal Loss 附有苹果叶病害数据集,可训练模型
2022-12-07 12:27:48 90.31MB SSD 算法改进 注意力机制 SE模块
针对目前主流的目标检测算法检测效率不高以及小目标检测困难的问题,提出一种改进的 SSD( SingleShot MultiBox Detector) 算法,并将其应用于道路环境车辆目标的检测。设计一个目标检测网络结构,对高层特征图不进行降采样,使用空洞卷积和深度可分离卷积层来提高模型性能,并使用 K-means 算法来对模型参数进行优化。在 Udacity 道路环境数据集上进行对比实验,结果表明,该算法对车辆目标检测的平均精准度达到了58. 01% ,检测速度达到了 86. 26 帧每秒,相比原 SSD 算法有明显提升。
2022-06-26 16:08:35 2.75MB SSD 行人检测 优化改进 目标检测
SSD 算法利用多尺度特征图进行分类和位置回归,检测小目标效果优于 YOLO 算法,但 SSD 算法在进行车辆检测时存在漏检问题。为此,提出一种改进 SSD 算法。为提取更多的车辆特征信息,设计改进 Inception 模块替代 SSD 网络中的 Conv8、Conv9 和 Conv10 层。将浅层特征的位置信息和深层特征的语义信息进行均衡化融合,构建多尺度特征融合均衡化网络,提高小目标车辆识别率。在特征提取层均引入 SENet,对不同特征通道的重要性进行重标定以提高模型性能。实验结果表明,改进后 SSD 算法在自制的车辆数据集上平均精度为 90.89%,检测速度达到 59.42 frame/s,相比改进前的 SSD 算法,在精度和速度上分别提高 2.65 个百分点和 17.41 frame/s,能够更快速、准确地对图像中的车辆进行识别和定位。
2022-06-26 16:08:34 1.94MB 小目标检测 SSD 注意力机制 车辆检测
基于SSD算法的人脸目标检测的研究.pdf
2022-03-07 12:09:26 1.47MB 基于SSD算法的人脸目标检测的研
1
SSD算法相关合集,收纳了以SSD算法为基础的改进目标检测算法
2021-11-04 12:34:40 41.82MB SSD算法 算法改进
1
该代码实现了基于一张照片上的20种目标检测,检测率高达80%以上。
2021-08-30 22:25:26 103.18MB ssd 目标检测
1
SSD类算法训练好的权重模型在coco2017/2014数据集上的测试代码,可出测试结果,实测可用。(pytorch版)
2014年的算法,不是SSA和SVD
2021-03-10 14:03:39 6KB SSD Matlab 奇异谱分解
1