针对利用平方根无极卡尔曼算法估算电池SOC时,因噪声协方差为常量带来的误差,在平方根无极卡尔曼滤波(SR-UKF)算法的基础,改进了算法,把每次测量的输出值残差的协方差作为噪声的协方差,得到自适应平方根无极卡尔曼滤波算法,使得噪声协方差随时间的更新而更新,解决了噪声协方差为常量带来的误差。实验表明,利用自适应平方根无极卡尔曼滤波算法对在常温下电池放电过程的SOC估计,精确度在总体上得到了提高,在电池工作区间0.2≤YSOC≤0.9内估计误差在1.5%以内。自适应平方根无极卡尔曼滤波算法对电池常温放电过程的SOC估计能满足电动汽车电池SOC估计的实际要求。
2021-08-23 11:34:36 598KB 电池; 荷电状态估计; SR-UKF; ISR-UKF;
1
外部输入通过神经元群模型可以产生不同类型的类似EEG的信号,但是外部输入信号的统计特性多采用经验值,而没有对其专门进行研究。在设定神经元群模型参数的情况下,SR-UKF被用来估计不同观测值所对应外部输入以及模型输出。实验证明外部输入估计数据的均值在前人所采用值的范围内,但是标准差比前面用到的小很多。
2021-05-03 16:28:48 243KB EEG信号
1