Android 2.2 及 2.2以上版本 适用的Flash插件!可以用于手机、Pad等智能移动平台,让其支持Flash!
2024-12-14 23:28:38 4.22MB Flash 插件 Android插件 Flash插件
1
能在Android手机上播放flash的APK,没有依赖Adobe flash插件
2024-12-14 23:19:53 1.26MB android flash
1
标题中的“Flash for Android2.3”指的是Adobe Flash Player在Android 2.3 Gingerbread操作系统上的版本。在本文中,我们将深入探讨Flash Player的历史、它在Android设备上的应用以及与Android 2.3系统的关系。 Flash Player是由Adobe公司开发的一款多媒体软件,用于在Web上展示动画、视频和交互式内容。在20世纪90年代末到21世纪初,Flash成为了互联网上最广泛使用的多媒体平台之一,特别是在在线游戏、广告和视频流媒体领域。然而,随着移动设备的普及,尤其是智能手机和平板电脑,对移动平台的支持变得至关重要。 Android 2.3 Gingerbread是Google在2010年发布的Android操作系统的一个主要版本。在这个版本中,Google引入了对更高效能和更省电特性的优化,使其更适合智能手机和平板电脑。由于当时许多网页内容依赖Flash技术,因此Flash Player对于Android设备的用户体验至关重要。 Adobe Flash Player v10.1是专门为Android设计的第一个稳定版本,它允许用户在移动设备上浏览包含Flash内容的网页,观看在线视频,玩Flash游戏,并享受其他丰富的互联网体验。这个版本支持Android 2.1及更高版本,包括Android 2.3 Gingerbread。安装Flash Player v10.1的APK文件(如Flash_Player_v10.1_for_android_2.1.apk)可以让用户在兼容的Android设备上启用这些功能。 然而,值得注意的是,随着时间的推移,Flash逐渐被HTML5等现代标准所取代,因为HTML5无需额外插件即可提供多媒体内容,而且更加跨平台和安全。2012年,Adobe宣布将不再为移动浏览器开发新的Flash Player版本,并在2018年底完全停止了对Flash的技术支持。自此,大多数现代浏览器和操作系统已不再内置或支持Flash Player,包括Android的后续版本。 尽管Flash Player在Android 2.3时代扮演了重要角色,但现在它的使用已经过时。开发者和网站所有者已经转向使用HTML5、CSS3和JavaScript来创建跨平台的互动内容,而用户则应该确保他们的设备和浏览器支持这些现代标准,以获得最佳的网络体验。 Flash for Android 2.3代表了一个时代的结束,一个过渡期,当时移动设备正在努力适应传统Web内容,而现代Web标准尚未完全成熟。尽管现在Flash Player已经不再被推荐使用,但它在推动移动互联网发展方面留下了不可磨灭的印记。
2024-12-14 21:57:50 4.14MB flash
1
STM32F407是意法半导体(STMicroelectronics)推出的一款高性能、低功耗的微控制器,属于Cortex-M4内核系列。在这个项目中,它通过SPI(Serial Peripheral Interface)接口与SPI Flash进行通信,并利用DMA(Direct Memory Access)技术来优化数据传输,提高系统的效率和响应速度。 SPI是一种同步串行通信协议,适用于多个设备间的简单通信。在SPI Flash中,数据以字节为单位进行传输,通常有一个主机(Master)和一个或多个从机(Slave)。STM32F407在这里作为主机,控制数据的发送和接收。SPI有四种工作模式:主模式发送、主模式接收、从模式发送和从模式接收。在这个项目中,STM32F407工作在主模式,用于控制SPI Flash的读写操作。 DMA是一种硬件机制,允许外设直接访问内存,而不需CPU参与。在STM32F407中,它提供了多个DMA通道,每个通道可以配置为不同的外设接口,如SPI。当使用DMA时,CPU可以执行其他任务,而数据传输在后台进行,大大降低了CPU的负担。在SPI Flash的读写操作中,DMA能实现高效、连续的数据传输,尤其对于大容量数据操作,效果显著。 项目"STM32F407 SPI FLASH DMA"可能包含以下关键部分: 1. **初始化配置**:STM32F407的初始化包括时钟配置、GPIO引脚配置(用于SPI接口)、SPI接口配置(如时钟相位和极性、数据大小等)以及DMA通道配置。 2. **SPI Flash驱动**:为了与SPI Flash交互,需要编写特定的驱动程序,包括初始化、读写操作函数等。这些函数会调用HAL库提供的SPI和DMA API来实现底层通信。 3. **DMA配置**:设置DMA传输参数,如源地址(SPI接口寄存器地址)、目标地址(内存地址)、传输长度、数据宽度等,并启动传输。 4. **中断处理**:当DMA传输完成时,会产生中断。需要编写中断服务例程来处理这些事件,例如更新状态、清理传输标志等。 5. **数据读写**:通过调用适当的函数,如`SPI_FLASH_Read()`和`SPI_FLASH_Write()`,实现对SPI Flash的读写操作。这些函数内部会利用DMA进行数据传输。 6. **错误处理**:确保在出现错误时能够正确处理,例如CRC校验失败、传输超时等。 7. **应用示例**:可能提供一些简单的应用程序示例,展示如何使用这些功能,比如读取和写入特定地址的数据。 项目中的"BSP_PRJ"可能是板级支持包(Board Support Package)的一部分,包含了所有必要的驱动和配置代码,使得开发者可以直接在STM32F407探索者开发板上运行这个示例。开发者可以在此基础上进行自己的应用开发,如构建固件升级系统、存储数据等。 STM32F407 SPI Flash DMA项目展示了如何利用STM32F407的强大功能进行高效的SPI通信,同时利用DMA技术提高系统性能。这为基于STM32F407的嵌入式系统开发提供了有价值的参考和实践案例。
2024-11-15 20:59:49 8.66MB STM32F407 SPI FLASH DMA
1
ti 芯片烧录软件
2024-11-13 13:13:44 37.22MB
1
STM32F405是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M4内核的微控制器,其内部集成了丰富的外设,包括一个高性能的内部Flash存储器。在嵌入式开发中,理解和高效利用STM32F405的内部Flash对于系统运行、程序存储和数据持久化至关重要。 我们来看`STMFLASH_STM32F405`这个标题,它暗示了这个压缩包中的内容可能与STM32F405的Flash编程有关。`stmflash.c`和`stmflash.h`这两个文件是C语言源代码和头文件,通常包含用于访问和操作STM32F405内部Flash的函数和定义。这些函数可能包括读取、写入和擦除Flash的操作,以及错误处理和状态检查等。 在STM32F405的内部Flash中,数据以页为单位进行操作。每一页的大小通常是2K或4K字节,而整个Flash的容量可以达到128KB到1MB不等,这取决于具体型号。Flash编程有以下几个关键步骤: 1. **初始化**:在对Flash进行任何操作之前,需要配置闪存控制寄存器(FLASH_CR),设置适当的编程、擦除速度和保护模式。 2. **擦除操作**:擦除操作通常涉及清除整个扇区或整个Flash。扇区大小在16KB到128KB之间,具体取决于器件。在擦除之前,需要确保Flash没有被锁定,并且要先执行擦除命令。 3. **编程操作**:编程是指将数据写入Flash。每个字节或半字都可以独立编程,但通常以半字或字为单位进行。编程前,需要检查待编程区域是否已被擦除。 4. **编程和验证**:写入数据后,需要通过比较写入值和读回值来验证编程是否成功。如果读回的值与写入的值一致,则编程成功。 5. **错误处理**:在编程过程中可能会遇到各种错误,如编程/擦除故障、校验错误等。需要设置中断和标志位来捕获这些错误并采取相应措施。 6. **保护和解锁**:为了防止意外修改Flash,STM32F405提供了多种保护机制,如选项字节区保护、扇区保护等。在进行任何Flash操作前,必须确保已正确解锁。 7. **功耗管理**:在编程和擦除过程中,Flash会产生较高的电流。因此,在电池供电的应用中,应考虑使用低功耗模式并在操作完成后及时恢复。 通过`stmflash.c`和`stmflash.h`提供的API,开发者可以方便地实现上述功能,比如`flash_erase_sector()`用于擦除扇区,`flash_write_page()`用于编程页,`flash_read()`用于读取数据,以及`flash_unlock()`和`flash_lock()`用于解锁和锁定Flash。 理解并熟练使用这些API对于编写高效、可靠的STM32F405 Flash管理代码至关重要。开发者可以根据具体需求进行优化,例如增加错误恢复机制,提高编程速度,或者实现安全的数据存储策略。在实际应用中,这些工具和方法可以广泛应用于固件更新、系统配置存储以及日志记录等功能。
2024-11-04 18:37:04 3KB
1
LPDDR4测试板 版权所有(c) 概述 该存储库包含针对围绕Xilinx Kintex-7 FPGA构建的实验平台的开放硬件设计文件。 该平台的主要目的是开发和定制支持LPDDR4 IC的RAM控制器。 设计文件是在KiCad中准备的。 该设计现在是进行中的作品。 储存库结构 主存储库目录包含KiCad PCB项目文件,许可证和自述文件。 其余文件存储在以下目录中: lib包含组件库 img包含本自述文件的图形 主要特点 Kintex-7 FPGA-XC7K70T-FBG484 带有定制DDR4 SO-DIMM连接器的模块化设计 HDMI输出连接器 带有1GbE收发器的以太网RJ45连接器 带有FT4232HQ FTDI USB控制器的Micro USB调试连接器 JTAG microSD卡插槽 QSPI闪存 外部7-12V电源输入 5个用户LED 4个用户按钮 框图 执照
2024-10-22 11:13:08 9.59MB
1
根据提供的文件信息,我们可以提炼出以下知识点: 1. MT40A2G4、MT40A1G8、MT40A512M16是镁光(Micron)公司生产的不同容量的DDR4 SDRAM存储器芯片型号。 - MT40A2G4表示有2GB容量,数据宽度为4位。 - MT40A1G8表示有1GB容量,数据宽度为8位。 - MT40A512M16表示有512MB容量,数据宽度为16位。 2. DDR4 SDRAM代表第四代双倍数据速率同步动态随机存取存储器,是目前较为先进的内存技术。 3. 核心电压(VDD)、VDDQ均提供1.2V±60mV的电压要求,而VPP为2.5V的内部驱动电压。 4. 采用1.2V伪开路漏极(pseudo open-drain)I/O接口,以降低功耗。 5. 提供16个内部存储体组(x4, x8)或8个内部存储体组(x16),组内有4个存储体。 6. 采用8n位预取架构,即8个数据位为一组进行预取,以提高数据处理速度。 7. 可编程数据预取指引,用于优化数据的时序和效率。 8. 支持数据预取指引训练,以提升信号的稳定性。 9. 拥有命令/地址延迟(Command/Address Latency,CAL)功能,允许灵活的时序设计。 10. 具备多用途寄存器读写能力,允许通过寄存器进行读写操作。 11. 支持写平衡(Write Leveling),保证数据的稳定写入。 12. 自我刷新模式(Self Refresh Mode)能够使DRAM在无系统时钟情况下保持数据。 13. 低功耗自动自我刷新(Low-power Auto Self Refresh, LPASR)功能,用于降低工作电流。 14. 温度控制刷新(Temperature Controlled Refresh, TCR)机制,根据温度变化自动调节刷新频率。 15. 细粒度刷新功能,提供灵活的控制以优化刷新周期。 16. 支持自刷新中断功能。 17. 实现最大化的电源节省。 18. 输出驱动器校准,以确保信号的稳定性和准确性。 19. 有标准、停车和动态的ODT(On-Die Termination,片上终结)功能。 20. 支持数据总线反转(Databus Inversion, DBI)技术,以减少功耗和电磁干扰。 21. 支持命令/地址(CA)校验功能,以增强数据传输的可靠性。 22. 数据总线写循环冗余校验(CRC)功能,用于检测数据在写入过程中的错误。 23. 拥有每颗DRAM的地址功能,便于模块化或定制设计。 24. 支持连接测试,以确保内存的正常连接和性能。 25. 符合JEDEC JESD-79-4标准,为行业广泛认可的内存技术规范。 26. 提供sPPR( Serial Presence Detect Partial Register)和hPPR(High Temperature Partial Register)功能。 27. 关键时序参数包括不同的循环时间(Cycle Time),以及对应的命令延迟(CL),行地址到列地址延迟(tRCD)和行预充电延迟(tRP)。 28. 操作温度分为商业级、工业级和汽车级,分别对应不同的温度范围。 29. 频率等级和时序等级的不同组合提供了多种性能选项,如3200MT/s @ CL=22,2933MT/s @ CL=21等。 30. 封装形式包括78球FBGA和96球FBGA,均有无铅(Pb-free)设计,并提供不同尺寸版本以适应不同应用场景。 31. 数据手册中列出了不同标记和版本号,以区分不同批次和制造细节,方便用户查询和采购。 通过以上信息,我们可以了解到镁光DDR4 SDRAM的技术参数、性能特点、操作环境以及型号识别等方面的知识,这些信息对于设计、生产和采购相关内存产品都具有很高的参考价值。
2024-10-14 16:28:41 17.8MB
1
flash 国产linux系统flash安装包(x86/amd),适用于麒麟、uos等国产linux系统在兆芯 / 海光 / intel / AMD等x86平台上。
2024-10-12 00:59:26 6.87MB linux
1
在国家开发大学的Flash动画制作实训任务2中,学生将学习如何绘制立体图形。Flash,作为Adobe公司曾经的旗舰级动画软件,虽然现在已经由Animate CC接替,但其在二维动画创作领域的地位不可忽视。这个实训任务的核心是利用Flash的绘图工具和技术来创建具有三维效果的图形,这对于理解空间感和视觉表现力至关重要。 我们要了解Flash的基本绘图工具。其中包括“线条工具”、“椭圆工具”、“矩形工具”以及“钢笔工具”。这些工具可以用来创建基本形状,通过调整填充色、边框色以及线条样式,可以实现各种图形的构建。对于立体图形的创建,我们还需要掌握“渐变变形”工具,它允许我们将颜色以渐变的方式应用到图形上,从而模拟出光影效果,为二维图形赋予深度。 在绘制立体图形时,我们将利用“变形”面板来改变图形的尺寸、旋转和倾斜角度。例如,通过调整X和Y轴的缩放比例,可以创建透视效果,模拟出物体在三维空间中的形态。同时,“旋转”和“倾斜”功能可以帮助我们制造物体的侧面或顶部视图,增强立体感。 接着,要实现更复杂的立体效果,可以运用“形状补间”和“动作补间”。形状补间允许我们在两个关键帧之间平滑地过渡形状,创造出动态的立体变化。而动作补间则可以实现对象在舞台上位置、大小或透明度的动态变化,为立体图形带来生动的动画效果。 此外,我们还需要掌握“图层”的概念。在Flash中,图层就像透明的画布堆叠在一起,每个图层可以独立绘制和操作,这样可以方便地管理不同部分的图形,如背景、前景物体和动画元素,使立体效果层次分明。 在实训任务2-2中,可能的具体操作步骤包括: 1. 使用矩形工具或椭圆工具创建基础形状。 2. 应用渐变变形工具创建阴影和高光,模拟立体感。 3. 使用变形面板调整形状的透视效果。 4. 创建多个图层,将不同部分的图形分配到相应图层。 5. 利用形状补间和动作补间制作动画效果。 6. 细调各个元素的位置、大小和透明度,优化立体感。 通过这个实训任务,学生不仅能掌握Flash的基础绘图技巧,还能提升空间构图和动态设计的能力。在完成任务的过程中,不断实践和探索,将有助于理解和创造出更具立体感和动态性的Flash动画作品。
2024-10-10 20:31:55 344KB
1