《科学写作》是由Dr. Kristin Sainani博士制作并提供的Coursera最新课程的课件,主要聚焦于科学领域的论文写作技巧。该课程通过一系列的PPT讲义,涵盖了多个关键主题,旨在帮助学生和科研工作者提升撰写高质量科研文章的能力。 "04_7-4-grants-iii_Module_7.4_slides_Research_Plan.pdf"这一部分可能涉及到的是如何制定科研计划。在撰写科研申请或项目提案时,研究计划是至关重要的一环。这部分可能会讲解如何清晰地阐述研究目标、方法、预期结果和潜在影响,以及如何有效地组织这些信息来吸引资助者的注意力。 "01_8-1-talking-with-the-media_Unit_8_slides.pdf"可能关注的是科学家与媒体的沟通技巧。在科学传播日益重要的今天,了解如何与媒体交流,将科研成果准确、生动地传达给公众,是科研工作者必备的技能。这部分可能会讨论如何准备媒体采访,如何简洁明了地解释复杂的科学概念,以及如何应对可能的误解和争议。 "06_8-6-social-media_Social_media_v.2.pdf"则可能涉及科学信息在社交媒体上的传播。随着社交媒体的发展,科研人员也需要学会利用这些平台来分享研究成果,扩大影响力。这部分可能涵盖如何建立专业的网络形象,如何发布吸引人的科学内容,以及如何处理网络互动和反馈。 "01_5-1-tables-and-figures_Unit_5_slides.pdf"可能深入探讨了论文中的图表设计。在科学论文中,图表是数据呈现的关键方式,能够直观地展示研究结果。这部分可能教导如何创建清晰、有效的图表,遵循科学出版的规范,以及如何利用图表增强文章的可读性。 "03_7-3-grants-ii_2017_Specific_Aims_V2_1.pdf"可能专注于科研基金申请中的具体目标设定。明确、具有吸引力的具体目标是获得资助的关键。这部分可能讲解如何撰写出有说服力的目标,包括背景介绍、研究问题、目标陈述和预期成果。 "02_7-2-grants-i_Getting_Started_Writing_GrantsV2.pdf"可能是关于启动基金申请写作的指南,包括如何寻找合适的资助机会,如何构建有力的论据,以及如何组织申请材料。 "05_8-5-interviewing-a-scientist_Interviewing.pdf"可能涵盖了对科学家进行访谈的技巧,这对于科研合作或者新闻报道都是重要的。这部分可能讨论如何准备面试,如何提问以获取深入的信息,以及如何记录和整理访谈内容。 "04_7-4-grants-iii_Module_7.4_slides_full_page.pdf"和"01_1-1-introduction-principles-of-effective-writing_Unit_1_slides.pdf"以及"01_4-1-more-paragraph-practice_Unit_4_slides.pdf"可能分别是更详尽的研究计划介绍,写作基本原则的入门教学,以及段落写作的进一步练习,旨在提升写作的整体质量和连贯性。 这个课程全面覆盖了科学写作的不同方面,从最初的科研计划制定,到最终的论文发表,以及中间的基金申请、媒体沟通、社交媒体策略等,为科研工作者提供了一个全方位的学习资源。通过学习这些内容,学员将能更好地理解和实践科学写作的核心原则,提升自己的科研表达能力。
2024-11-09 17:42:05 14.55MB 论文写作 PPT coursera
1
IBM HR员工减员 数据取自此处要解决的主要业务问题是如何创建系统以帮助大公司通过了解哪个员工可能离职来控制其减员,从而为他/她提供一些激励措施。留下来。 如何导航? 注意: 3X项目仅使用Python 3.X和Tableau 10.0及更高版本进行分析 PPT-包含业务问题和转换为DS问题 Tableau-EDA洞察 功能选择 各种分类模型 最终PPT-解释 报告 安装 $ pip install imblearn # For Smote 问题陈述 我们的客户是ABC一家领先的公司,在该领域表现良好。 最近,它的员工流失率急剧上升。 在过去的一年中,员工流失率已从14%上升到25%。 我们被要求制定一项战略,以立即解决该问题,以免影响公司的业务发展,并提出长期有效的员工满意度计划。 当前,尚无此类程序。 不能再加薪。 幻灯片在 探索性数据分析 数据是不平衡的,我们有83%的人尚未离
2024-10-11 07:03:26 16.14MB python data-science data random-forest
1
Thoughtful Data Science: A Programmer's Toolset for Data Analysis and Artificial Intelligence with Python, Jupyter Notebook, and PixieDust Bridge the gap between developer and data scientist by creating a modern open-source, Python-based toolset that works with Jupyter Notebook, and PixieDust. Key Features Think deeply as a developer about your strategy and toolset in data science Discover the best tools that will suit you as a developer in your data analysis Accelerate the road to data insight as a programmer using Jupyter Notebook Deep dive into multiple industry data science use cases Book Description Thoughtful Data Science brings new strategies and a carefully crafted programmer's toolset to work with modern, cutting-edge data analysis. This new approach is designed specifically to give developers more efficiency and power to create cutting-edge data analysis and artificial intelligence insights. Industry expert David Taieb bridges the gap between developers and data scientists by creating a modern open-source, Python-based toolset that works with Jupyter Notebook, and PixieDust. You'll find the right balance of strategic thinking and practical projects throughout this book, with extensive code files and Jupyter projects that you can integrate with your own data analysis. David Taieb introduces four projects designed to connect developers to important industry use cases in data science. The first is an image recognition application with TensorFlow, to meet the growing importance of AI in data analysis. The second analyses social media trends to explore big data issues and natural language processing. The third is a financial portfolio analysis application using time series analysis, pivotal in many data science applications today. The fourth involves applying graph algorithms to solve data problems. Taieb wraps up with a deep look into the future of data science for developers and his views on AI for data science. What you will learn Bridge the gap between developer and data scientist with a Python-based toolset Get the most out of Jupyter Notebooks with new productivity-enhancing tools Explore and visualize data using Jupyter Notebooks and PixieDust Work with and assess the impact of artificial intelligence in data science Work with TensorFlow, graphs, natural language processing, and time series Deep dive into multiple industry data science use cases Look into the future of data analysis and where to develop your skills Who this book is for This book is for established developers who want to bridge the gap between programmers and data scientists. With the introduction of PixieDust from its creator, the book will also be a great desk companion for the already accomplished Data Scientist. Some fluency in data interpretation and visualization is also assumed since this book addresses data professionals such as business and general data analysts. It will be helpful to have some knowledge of Python, using Python libraries, and some proficiency in web development. Table of Contents Chapter 1 Perspectives on Data Science from a Developer Chapter 2 Data Science at Scale with Jupyter Notebooks and PixieDust Chapter 3 PixieApp under the Hood Chapter 4 Deploying PixieApps to the Web with the PixieGateway Server Chapter 5 Best Practices and Advanced PixieDust Concepts Chapter 6 Image Recognition with TensorFlow Chapter 7 Big Data Twitter Sentiment Analysis Chapter 8 Financial Time Series Analysis and Forecasting Chapter 9 US Domestic Flight Data Analysis Using Graphs Chapter 10 Final Thoughts
2024-07-28 12:25:03 22.87MB Data  Science AI  Financial
1
《Python数据科学手册》是Jake VanderPlas撰写的一本针对数据科学和机器学习工具的权威指南,特别适合已经熟悉Python编程的科学家和数据分析师。这本书的2023年版全面更新,旨在帮助读者掌握使用Python进行数据分析的核心工具。 1. **IPython与Jupyter**: IPython是一个交互式计算环境,而Jupyter Notebook是基于Web的界面,让科学家能够以交互方式编写和展示代码、数据和可视化结果。这两个工具结合,为数据科学家提供了强大且灵活的工作平台,支持多语言,便于合作和文档记录。 2. **NumPy**: NumPy是Python的一个核心库,提供了多维数据结构`ndarray`,用于高效存储和处理大型数组数据。NumPy还包含数学函数库,支持向量和矩阵运算,是进行数值计算的基础。 3. **Pandas**: Pandas是构建在NumPy之上的数据处理库,其DataFrame对象提供了一种高效的方式来组织和操作结构化或标签数据。DataFrame允许用户轻松地清洗、转换和合并数据,非常适合进行数据预处理工作。 4. **Matplotlib**: Matplotlib是Python最常用的绘图库,支持创建各种静态、动态和交互式的可视化。它提供了一套类似于MATLAB的API,可以绘制2D和3D图形,并支持自定义颜色、样式、标签等元素,满足复杂的数据可视化需求。 5. **Scikit-Learn**: Scikit-Learn是Python中广泛使用的机器学习库,提供了大量预包装的算法,包括监督学习(如分类、回归和聚类)和无监督学习方法。Scikit-Learn的API设计简洁,使得构建和评估机器学习模型变得简单。 6. **其他相关工具**: 除了上述工具,书中可能还会涵盖其他辅助工具,如用于数据处理的Pandas扩展库(如Dask、Pyspark),用于统计分析的Statsmodels,以及用于深度学习的TensorFlow和Keras等。 通过本书,读者将能够: - 学习如何利用IPython和Jupyter Notebook进行高效的数据探索和分析。 - 掌握NumPy和Pandas进行数据存储、清洗、转换和操纵的技巧。 - 使用Matplotlib创建各种图表,以视觉方式表达数据。 - 了解并应用Scikit-Learn构建机器学习模型,包括训练、验证和优化模型。 - 探索和整合其他相关工具,以扩展Python数据科学工具箱。 Jake VanderPlas,作为本书的作者,拥有丰富的经验,他在Google Research担任软件工程师,专注于开发支持数据密集型研究的工具,包括Scikit-Learn在内的Python库,确保了书中的内容既实用又前沿。这本书是Python数据科学家必备的参考资源,无论你是初学者还是经验丰富的专业人士,都能从中受益。
2024-07-24 11:37:14 19.7MB python
1
python data science handbook-english version python data science handbook-english version
2024-07-24 11:30:15 20.47MB python
1
envi crop science ;ENVI精准农业工具包;ENVI扩展;ENVI 5.6+64bit 版本! -- envi cropscience112-win.exe: ENVI精准农业扩展模块; 还有(ENVI深度学习模块、ENVI空间分析模块、ENVI摄影测量扩展模块、ENVI雷达影像处理模块)文件太大了,没上传。可以私信我。 !!!安装方法:右击程序选择“以管理员身份运行”安装即可,无需再破解
2024-06-16 14:58:34 43.79MB ENVI
1
Phishing_Website_Detection:该项目基于使用随机森林分类公式检测网络钓鱼欺诈性网站。 使用Python编程语言和Django框架实现
2024-05-20 11:25:47 53KB python security data-science machine-learning
1
科学论文写作包括第一版和第二版,帮助快速入门英语论文写作 Science research writing for non-native and native speakers
2024-04-11 09:04:49 118.42MB 英语论文写作
1
窝 用于查询Web of Science数据库的SOAP客户端 描述 Web of Science(以前称为Web of Knowledge)是由Clarivate维护的基于在线订阅的科学引文索引服务。 wos是一个Python SOAP客户端(API和命令行工具),用于查询WOS数据库,以便使用WWS访问从查询中获取XML数据。 安装 该软件包已上传到 ,因此您可以使用pip安装该软件包: 点安装wos 文献资料 可以在上访问本README以及有关类和方法的文档。 用法 您可以使用wos命令查询Web of Science API。 如果要访问需要使用高级API访问的数据,则还必须使用用户名和密码进行身份验证。 用法:wos [-h] [--close] [-l] [-u用户] [-p密码] [-s SID] {query,doi,connect} ... 查询Web of
2024-04-09 16:30:03 16KB python api-client Python
1
用python作为导论语言,带领读者进入计算机世界,认识计算机科学,是一本别具一格的计算机导论教材。富有趣味性,知识性、系统性。
2024-02-25 12:02:59 795KB Python computer science introduction
1