在本资源中,我们主要探讨的是利用机器学习中的回归算法来预测葡萄酒的质量。回归是一种预测性的建模技术,用于研究两个或多个变量间的关系,尤其是因变量与一个或多个自变量之间的关系。在这个实战案例中,我们将关注Lasso、Ridge和ElasticNet三种回归算法,它们都是线性模型的变种,特别适用于处理具有大量特征或者存在多重共线性的数据集。 让我们了解下Lasso回归(Least Absolute Shrinkage and Selection Operator)。Lasso回归在最小化平方误差的同时,引入了L1正则化项,这使得部分系数变为零,从而实现特征选择的效果。通过这种方式,Lasso不仅可以减少过拟合的风险,还能帮助我们理解哪些特征对目标变量的影响更为显著。 接着是Ridge回归(岭回归),它采用了L2正则化,即在损失函数中添加了特征权重的平方和。与Lasso不同,Ridge不会使系数完全变为零,而是将所有系数都缩小到一个较小的值,这样可以保持所有特征的贡献,同时降低模型复杂度,防止过拟合。 ElasticNet是Lasso和Ridge的结合体,它综合了两者的优点。ElasticNet引入了L1和L2正则化的线性组合,既保留了特征选择的能力,又保持了模型的稳定性。在特征之间有强相关性的情况下,ElasticNet往往比单独使用Lasso或Ridge表现更好。 在这个实战项目中,我们将使用葡萄酒质量数据集(winequality-red.csv),这是一个常见的多变量数据集,包含了红葡萄酒的各种化学属性,如酒精含量、酸度等,以及对应的葡萄酒质量评分。通过这个数据集,我们可以训练和比较上述三种回归模型的预测性能,通常我们会使用交叉验证来评估模型的稳定性和泛化能力。 10_葡萄酒质量预测.py 文件应该包含了整个分析过程的Python代码。代码可能涵盖了数据预处理(例如缺失值处理、特征缩放)、模型训练(使用sklearn库中的Lasso、Ridge和ElasticNet类)、模型评估(如均方误差、R^2分数等指标)以及可能的模型调优步骤。 这个实战案例旨在帮助我们理解和应用不同的回归算法,特别是在处理具有大量特征的数据集时,如何通过正则化技术来提升模型的预测能力和解释性。通过对Lasso、Ridge和ElasticNet的比较,我们可以更深入地理解它们在实际问题中的适用场景,为未来的工作提供有价值的参考。
2024-07-03 16:06:06 24KB 机器学习
1
参考 6.2.2 Kernel Ridge Regression, An Introduction to Support Vector Machines and other Kernel-based Learning Methods, Nello Cristianini 和 John Shawe-Taylor 参考 7.3.2 Kernel Methods for Pattern Analysis, John Shawe-Taylor University of Southampton, Nello Cristianini 加州大学戴维斯分校核岭回归 (KRR) 将岭回归(线性最小二乘与 l2 范数正则化)与核技巧相结合。 因此,它学习了由相应内核和数据引起的空间中的线性函数。 对于非线性内核,这对应于原始空间中的非线性函数。 Kernel Ridge 学习的模型形式与支持向量回归(SVR
2023-04-10 11:04:23 160KB matlab
1
基于波士顿房价数据集,分别使用LinearRegressio,Lasso,ridge, Elastic net线性回归模型进行房价预测,对比模型优劣。适用于建模竞赛的模型选择与调参。 可在博主的机器学习算法专栏中找到对代码的逐句讲解。
2023-03-19 21:28:16 2KB 线性回归 机器学习
1
Thunderbolt Maple Ridge
2022-10-25 13:15:51 648KB intel ridge
Thunderbolt Cactus Ridge driver - NHI driver.
2022-09-23 17:01:27 6KB ridge
可用于UnityVR开发,3D游戏开发,高清天空盒子Skybox素材,游戏环境背景素材,无水印。 让你身临其境的天空盒子,各类题材丰富,都是辛苦搜罗所得的高清exr格式,可以直接用于Unity开发,特别是VR游戏的开发。 内景、外景、城市、乡间、日出,夜晚,欧式宫殿,中式园林,应有尽有,可以在我的下载频道选择需要的下载。 注意,由于是高清,所以体积较大(大的可以达到500M),请下载前预留合适的空间。 使用方法: 1-导入Unity后将图片的Shape转换成cube形式, 2-创建空Material,并转换成Cube/skybox形式, 3-将图片拖入新建的SkyboxMaterial, 4-用刚创建的Material代替项目中原本的系统默认Skybox
2022-06-09 22:10:30 259.43MB vr skybox 天空盒子 虚拟实境
Titan Ridge DP 1.41.pdf
2022-04-23 13:42:27 4.57MB TBT TitanRidge
1
pyLinearRegression 具有l2-norm(Ridge回归)的线性回归的Python实现 用法 专案追踪志上的一系列网志文章 每个算法都包含在其自己的文件夹中。 依存关系 Python 3+ 麻木 matplotlib仅用于演示 免责声明 仅用于教育目的。 使用风险自负。
2022-01-09 19:33:10 8KB Python
1
thunderbolt 3 jhl7540 datasheet
2021-11-14 18:03:26 6.23MB dsl6540 jhl6540 jhl7540 雷电
1
1. 数据加载 假如进行房价的预测,这里加载的数据共1000条,共十个维度(十个特征),除了id以外,其余的都是自变量(9个可用) import pandas as pd import numpy as np import os import matplotlib.pyplot as plt os.chdir(r"C:\Users\86177\Desktop") df = pd.read_csv('sample_data_sets.csv') print(df.columns) print(df.shape) –> 输出的结果为: Index(['id', 'complete_year',
2021-11-01 13:59:52 149KB ar AS c
1