matlab中rbf源代码支持向量机 在该存储库中,提供了一个MATLAB工具箱,以针对不平衡和多类型分类问题训练和测试基于支持向量机(SVM)的模型。 附加了两个分类技巧,即granularization和binary-tree以形成GBT-SVM模型。 有关该模型的详细信息,请参考我的。 工具箱的构造 文件夹中的代码和脚本可用于构建粒度SVM(GSVM)模型,该模型能够形成树结构分类器。 我在这里列出了名称和相应的注释。 方法 评论 getGranule 通过将主要类别拆分为子集或颗粒来生成平衡的数据集。 myCrossSVM 通过交叉验证和网格化训练SVM模型,内核是可选的。 myGSVM预测 使用训练有素的模型对新样品进行分类。 获取颗粒 为了获得平衡的数据集,您可以使用getGranule作为 >>> [DataGranules] = getGranule(data,label) 输出DataGranules是一个结构,形成为 数据粒度 MajIdx :主要类别的标签 MinIdx :次要类别的标签 GraNum :颗粒数 MinData :次要样本的数据和标签 MajDat
2022-03-09 13:09:17 1.51MB 系统开源
1
RBF径向基神经网络matlab源代码编程,有利于更好的理解此算法!
2021-08-02 20:58:45 481B RBF源代码
1
rbf源代码rbf源代码的MATLAB实现
2021-07-14 13:12:47 3KB 阿娇回答打开
1
实现RBF预测的matlab 源代码 已含数据预处理部分
2021-03-09 16:18:20 2KB RBF matlab 源代码
1