机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习算法项目机器学习
2024-11-24 22:02:16 68.32MB 机器学习
1
【基于matlab的手势识别系统】是一个利用计算机视觉和机器学习技术实现的创新性应用,主要目的是通过识别特定的手势来执行相应的数字命令。在这个系统中,手势被映射为1到10的数字,使得用户可以通过简单的手部动作与设备进行交互。以下是关于这个系统的几个关键知识点: 1. **MATLAB平台**:MATLAB是一种强大的数学计算软件,广泛用于信号处理、图像处理、机器学习等多个领域。在这个项目中,MATLAB被用作开发环境,提供了丰富的图像处理工具箱和机器学习库,简化了算法实现和系统集成的过程。 2. **新手势录入**:系统允许用户录入新的手势样本,这在实际应用中是非常实用的,因为它可以适应不同用户的手势习惯,提高系统的个性化和适应性。录入过程可能涉及到手势捕捉、预处理和特征提取等步骤。 3. **PCA(主成分分析)**:PCA是一种常见的特征提取方法,用于降维和数据可视化。在手势识别中,PCA可以用来减少图像的复杂度,提取最能代表手势特征的主成分,同时减少计算负担。 4. **特征提取**:这是图像识别中的关键步骤,包括色彩特征、纹理特征、形状特征等。对于手势识别,可能使用霍夫变换检测轮廓,或者利用灰度共生矩阵分析纹理信息,以区分不同的手势。 5. **机器学习算法**:系统采用了机器学习算法进行训练和识别。可能使用的算法包括SVM(支持向量机)、KNN(K近邻)、神经网络等。这些算法通过对大量手势样本的学习,构建分类模型,以区分不同的手势。 6. **训练迭代**:在机器学习过程中,迭代训练是提升模型性能的关键。通过反复迭代,模型可以逐步优化,提高对新样本的识别准确率。 7. **增加样本数量**:为了提高识别的准确性,系统允许增加更多的手势样本。增加样本可以增强模型的泛化能力,使其在面对未见过的或变化的手势时仍能做出正确的判断。 8. **系统自主编程**:描述中提到系统是自主编程的,这意味着所有的算法实现和界面设计都是定制的,没有依赖现成的解决方案,这体现了开发者在图像处理和机器学习领域的深厚技术基础。 9. **文件列表解析**:"基于的手势识别系统支.html"可能是系统的介绍或使用手册,提供操作指南;"1.jpg"和"2.jpg"可能是手势样本图片,用于训练或演示;"基于的手势识别.txt"可能包含了源代码片段、算法描述或其他相关文档。 这个基于MATLAB的手势识别系统结合了计算机视觉和机器学习的先进技术,为用户提供了一种直观、便捷的人机交互方式。它展示了MATLAB在工程实践中的强大功能,以及在人工智能领域中的广泛应用。
2024-08-10 20:46:20 505KB matlab 机器学习
1
1.本项目以相关平台音乐数据为基础,以协同过滤和内容推荐算法为依据,实现为不同用户分别推荐音乐的功能。 2.项目运行环境:包括 Python 环境、MySQL 环境和 VUE 环境。需要安装的依頼包为: Django 2.1、PyMySQL 0.9.2、jieba 0.39、xlrd 1.1.0、gensim 3.6.0 3.项目包括4个模块:数据请求及存储、数据处理、数据存储与后台、数据展示。其中数据处理部分包含计算歌曲、歌手、用户相似度和计算用户推荐集。数据存储与后台部分主要在PyCharm中创建新的Django项目及5个模板,即主页、歌单、歌手、歌曲和用户。前端实现的功能包括:用户登录和选择偏好歌曲、歌手;为你推荐(用户行为不同,推荐也不同) ;进入各页面时基于内容的推荐算法为用户推荐歌单,协同过滤算法为用户推荐歌曲、歌手;单击时获取详细信息,提供单个歌单、歌曲、歌手、用户的推荐;个性化排行榜(将相似度由大到小排序);我的足迹。 4.项目博客: https://blog.csdn.net/qq_31136513/article/details/132335950
2024-06-20 19:08:27 229.93MB mysql vue.js django 推荐算法
适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!
2024-05-28 12:49:12 133.66MB 毕业设计
1
1. 这是作者花费一周的时间,使用python写出的策略迭代和值迭代强化学习算法,以一个完整的项目发布,为解决“已知马尔科夫决策过程五元组,求最优策略”这类问题提供了算法与通用框架 2. 项目采用面向对象架构和面向抽象编程,用户可以在抽象类基础上,利用继承机制,定义新的具体环境类,测试该算法的有效性。项目还给出了unittest.Testcase的测试代码。 3. 在该项目中算法名称分别对应类:ValueIterationAgent和PolicyIterationAgent(都继承自MdpAgent),马尔科夫决策模型已知的环境抽象类MdpEnv 4. 为展示该算法的有效性,定义了一个GridWorldEnv的具体类,实现了作者博文中“在格子世界中寻宝”的最优策略的学习,并定义了一个GridWorldUI类可视化最优策略及基于最优策略的,用户可以运行住文件main.py 5. 该项目源码的最大特点是:架构合理,可维护性好,可读性强。你不断能学到这两个强化学习算法的精髓,也能够学到什么是好的python程序架构。 6.注意先阅读里面的readme.txt文件。
2024-05-08 21:56:25 329KB 强化学习 策略迭代 面向对象 python
1
基于Springboot+Vue+Python深度神经网络学习算法水质管理预测系统设计毕业源码案例设计
2024-04-30 13:48:38 4.21MB
1
1.项目利用Python爬虫技术,通过网络爬取验证码图片,并通过一系列的处理步骤,包括去噪和分割,以实现对验证码的识别和准确性验证。 2.项目运行环境:Python环境:需要Python 2.7配置,在Windows环境下下载Anaconda完成Python所需的配置,下载地址为https://www.anaconda.com/,也可以下载虚拟机在Linux环境下运行代码。 3.项目包括4个模块:数据爬取、去噪与分割、模型训练及保存、准确率验证。用request库爬虫抓取验证码1200张,并做好标注。图片爬取成功后进行去噪与分割。处理数据后拆分训练集和测试集,训练并保存。模型保存后,可以被重新使用,也可以移植到其他环境中使用。 4.准确率评估:测试结果精度达到99%以上。 5.项目博客:https://blog.csdn.net/qq_31136513/article/details/131571160
2024-04-28 10:40:57 23.11MB python 爬虫 机器学习 验证码识别
1
1.本项目采用百度地图API获取步行时间,基于GBDT模型对排队时间进行预测。实现用户自主选择多个目的地,系统输出最佳路线规划的结果,并根据用户的选择给出智能化推荐。 2.项目运行环境:需要Python 3.6及以上配置。 3.项目包括6个模块:数据预处理、客流预测、百度地图API调用、GUI界面设计、路径规划和智能推荐。选用GBDT建立模型,GBDT通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮的残差基础上进行训练;采用GBDT模型进行预测,输入当前天气、温度、风力风向、日期(是否是节假日、星期几)和时间即可得出当前客流量;当前客流量在后续预测排队时做一系列操作即可转换为排队时间;通过调用百度地图API模块产生节点之间的步行时间矩阵和客流模型,应用穷举法设计算法,得出最佳路线规划;系统将用户未选择的地点一次分别加入已选择的队列中进行运算,其基本思路与最佳路线规划模块一致,采用穷举法得到所有路线及其总耗时,最后将它们输出,实现智能推荐。 4.博客:https://blog.csdn.net/qq_31136513/article/details/133018114
2024-04-24 18:32:16 10.68MB 机器学习 python GBDT 最优路径
1
1.本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。 2.项目运行环境包括:Python 环境、Anaconda环境。 3.项目包括3个模块:数据预处理、模型构建、模型训练及保存。项目使用德国交通标志识别基准数据集(GTSRB),此数据集包含50000张在各种环境下拍摄的交通标志图像;模型构建包括VGG模型和GoogLeNet模型简化版深度学习模型,MiniGoogLeNet由Inception模块、Downsample模块和卷积模块组成,卷积模块包括卷积层、激活函数和批量归一化;通过随机旋转等方法进行数据增强,选用Adam算法作为优化算法,随着迭代的次数增加降低学习速率,经过尝试,速率设为0.001时效果最好。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/135080491
2024-04-11 12:51:19 32.13MB 深度学习 python 图像识别 目标检测
1
使用Python的动手深度学习算法 这是Packt发布的《 的代码库。 通过使用TensorFlow实施深度学习算法和广泛的数学知识 这本书是关于什么的? 深度学习是AI领域最受欢迎的领域之一,可让您开发各种复杂程度不同的多层模型。 本书涵盖以下激动人心的功能: 实施基础到高级的深度学习算法 掌握深度学习算法背后的数学 熟悉梯度下降及其变体,例如AMSGrad,AdaDelta,Adam和Nadam 实施循环网络,例如RNN,LSTM,GRU和seq2seq模型 了解机器如何使用CNN和胶囊网络解释图像 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 该代码将如下所示: J_plus = forward_prop(x, weights_plus) J_minus = forward_prop(x, weights_minus) 这是您需要的本
2024-04-10 09:45:51 127.09MB python machine-learning deep-learning
1