基于TD3强化学习算法解决四轴飞行器悬浮任务
2025-12-02 23:55:55 10.75MB 强化学习 ddpg
1
python脑神经医学_机器学习算法_脑电信号处理_癫痫发作预测系统_基于Fourier变换和PCA降维的EEG特征提取与多模型分类_随机森林_SVM_逻辑回归_决策树算法_蓝牙传输_STM3.zip脑神经医学_机器学习算法_脑电信号处理_癫痫发作预测系统_基于Fourier变换和PCA降维的EEG特征提取与多模型分类_随机森林_SVM_逻辑回归_决策树算法_蓝牙传输_STM3.zip 在现代医学领域,利用机器学习算法对脑电信号进行分析以预测癫痫发作的研究逐渐增多。这一研究方向旨在通过高级的数据处理技术提高预测的准确性,从而为癫痫患者提供更为及时的预警和治疗。本项目的核心技术包括Fourier变换、PCA降维、以及多种机器学习模型,如随机森林、支持向量机(SVM)、逻辑回归和决策树算法。这些技术的综合运用,旨在从复杂的脑电信号(EEG)数据中提取有价值的特征,并通过不同的分类模型进行预测。 Fourier变换是一种数学变换,用于分析不同频率成分在信号中的表现,而PCA(主成分分析)降维是一种统计方法,能够降低数据集的维度,同时保留数据最重要的特征。在本项目中,这两种技术被用来处理EEG信号,提取出对预测癫痫发作最有贡献的特征。 随机森林是一种集成学习算法,通过构建多个决策树并将它们的预测结果进行汇总来提高整体模型的预测准确度和稳定性。SVM模型则通过寻找最佳的超平面来区分不同的数据类别,适用于处理高维数据和非线性问题。逻辑回归虽然在原理上是一种回归分析方法,但在二分类问题中,它通过将线性回归的结果转换为概率值来进行预测。决策树模型则是通过一系列的问题来预测结果,它易于理解和实现,适合快速的分类预测。 上述提到的各种模型都被用于本项目中,通过并行处理和结果比较,以期达到最佳的预测效果。在实际应用中,这些模型的训练和测试可能需要大量的计算资源和时间,因此研究者常常需要优化算法以提高效率。 蓝牙传输技术在本项目中的应用,意味着预测系统可以通过无线信号将分析结果实时地发送到患者的监护设备上,如智能手机或专用的医疗设备。这样,患者或医护人员能够及时接收到癫痫发作的预警信息,从而做出快速反应。而STM3可能是指某种硬件模块或微控制器,它可能是项目中的一个关键组件,用于处理信号或将数据传输给移动设备。 整个项目的目标是通过融合先进的信号处理技术和机器学习算法,为癫痫患者提供一个便携、高效的预测系统。这样的系统能够在不影响患者日常生活的前提下,持续监控患者的EEG信号,一旦检测到异常,即刻通过蓝牙技术将警报发送至监护设备。 通过附带的说明文件和附赠资源,用户可以更深入地了解系统的使用方法、技术细节以及可能遇到的问题和解决方案。这些文档为系统的安装、配置和维护提供了宝贵的指导。 医疗技术的不断进步,尤其是结合了机器学习算法的智能医疗设备的出现,正逐步改变着疾病的诊疗模式,提升了患者的生活质量。癫痫预测系统的研发是这一趋势的缩影,它不仅促进了医学与信息科学的交叉融合,也为患者提供了更为个性化和精准的医疗服务。
2025-11-17 08:48:32 471KB python
1
1.本项目基于网络开源平台Face++ . API,与Python 网络爬虫技术相结合,实现自动爬取匹配脸型的发型模板作为造型参考,找到最适合用户的发型。项目结合了人脸分析和网络爬虫技术,为用户提供了一个个性化的发型推荐系统。用户可以根据他们的脸型和偏好来寻找最适合的发型,从而更好地满足他们的美容需求。这种项目在美容和时尚领域具有广泛的应用潜力。 2.项目运行环境:包括 Python 环境和Pycharm环境。 3.项目包括4个模块: Face++ . API调用、数据爬取、模型构建、用户界面设计。Face++ . API可检测并定位图片中的人脸,返回高精度的人脸框坐标,只要注册便可获取试用版的API Key,方便调用;通过Selenium+Chrome无头浏览器形式自动滚动爬取网络图片,通过Face++性别识别与脸型检测筛选出用发型模板,图片自动存储指定位置并按性别、脸型序号形式命名。模型构建包括库函数调用、模拟用户面部图片并设定路径、人脸融合。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/132868949
2025-10-31 14:12:44 112.24MB face++ 图像识别 图像处理 人脸识别
1
2025电赛基于航空大数据的航班延误预测与航线优化系统_航班数据采集_航班延误分析_航线规划_航空公司运营优化_旅客出行建议_实时航班监控_历史数据分析_机器学习预测模型_深度学习算法_大数据.zip 航空运输业作为全球交通系统的重要组成部分,近年来在大数据技术的推动下,已经实现了从传统运营方式向智能运营方式的转变。在此过程中,航班延误预测与航线优化系统成为了研究热点,它们通过分析历史数据与实时数据,不仅为航空公司提供运营优化建议,也为旅客提供了更合理的出行方案。 该系统的核心在于通过大数据技术进行航班数据的采集与处理。数据来源包括但不限于飞行器通讯寻址与报告系统(ACARS)、飞机通信寻址与报告系统(ADS-B)、飞行管理系统(FMS)和多种在线数据服务。这些数据被整理并录入到中心数据库中,为后续的数据分析提供原始素材。 在航班延误分析方面,系统通常会利用历史数据分析和机器学习预测模型来识别导致延误的常见原因,如天气条件、技术故障、空中交通控制和机场容量等。通过应用深度学习算法,系统能够学习并识别出数据中的复杂模式,并提高预测的准确性。这些模型可进行实时监控和历史数据分析,以此来判断某次航班延误的可能性,并给出预测结果。 航线规划是该系统的重要组成部分,它涉及到根据历史数据和当前航班状态对航线进行优化。系统会综合考虑飞行效率、成本、乘客满意度等因素,通过优化算法对航线进行调整,以减少航班延误,提高航班正点率和整体运营效率。 航空公司运营优化是系统的目标之一。通过对航班延误的深入分析,航空公司能够制定出更加合理的航班计划和应对策略,减少因延误造成的损失,提高服务质量。同时,实时航班监控功能使得航空公司能够快速响应航班运行中的各种状况,确保航班安全、高效地运行。 对于旅客出行建议而言,系统能够根据航班的实时状态和预测信息,为旅客提供最合适的出行计划。这不仅能够帮助旅客避免不必要的等待和转机,还能够提升他们的出行体验。 整个系统的设计和实施涉及到多种技术手段和方法,其中机器学习和深度学习是核心技术。机器学习模型通过不断地训练和学习,能够对复杂的数据集进行有效的分析和预测。而深度学习算法更是通过模拟人脑神经网络,能够处理和识别数据中的高级特征,为航班延误预测提供更深层次的见解。 最终,航班延误预测与航线优化系统将大数据技术、机器学习和深度学习算法有机结合,为航空业提供了一套全面的解决方案。这不仅有助于提升航空公司的运营效率和服务水平,也能够为旅客提供更加便捷和舒适的出行体验。
2025-10-16 14:53:16 4.65MB python
1
本项目是一个基于深度学习算法的农作物病虫害智能检测系统,采用YOLOV11目标检测算法为核心,结合PyTorch深度学习框架,构建了包含前端展示、后端服务和数据库管理的完整解决方案。系统支持YOLOV1至YOLOV11全系列模型,可实现图片、视频和实时摄像头三种方式的农作物病害检测。 系统主要针对四大类经济作物进行病虫害识别:玉米可检测疫病、普通锈病、灰斑病等4种状态;水稻可识别褐斑病、稻瘟病等3种病害;草莓支持角斑病、炭疽果腐病等7种病症检测;西红柿则可识别早疫病、晚疫病等9种病虫害类型。该系统可广泛应用于农业生产中的病虫害监测、预警和防治工作。 深度学习基于YOLOv11农作物病虫害检测识别系统,融合Pytorch、Flask、SpringBoot、Vue、MySQL等先进技术。识别玉米、水稻、草莓和西红柿的常见病虫害,为农业病虫害的分析、预防和管理提供智能解决方案。 解压密码见:https://blog.csdn.net/AnChenliang_1002/article/details/149398678?spm=1011.2415.3001.5331
2025-10-11 20:50:54 303.44MB yolo vue springboot mysql
1
强化学习算法复现研究:深度探究Reinforcement Learning-Based Fixed-Time轨迹跟踪控制机制及其在机械臂的应用——适应不确定性系统及输入饱和状态的自适应控制框架与简易代码实践指南。,《顶刊复现》(复现程度90%),Reinforcement Learning-Based Fixed-Time Trajectory Tracking Control for Uncertain Robotic Manipulators With Input Saturation,自适应强化学习机械臂控制,代码框架方便易懂,适用于所有控制研究爱好者。 ,核心关键词:顶刊复现; 强化学习; 固定时间轨迹跟踪控制; 不确定机械臂; 输入饱和; 自适应控制; 代码框架; 控制研究爱好者。,《基于强化学习的机械臂固定时间轨迹跟踪控制:复现程度高达90%》
2025-09-29 03:11:49 555KB
1
基于深度强化学习算法的电力市场决策建模:DDPG策略在发电商竞价中的应用研究,基于深度强化学习算法的电力市场竞价策略建模程序代码研究——深度探索DDPG在发电商竞价决策中的应用,基于Agent的电力市场深度决策梯度(深度强化学习)算法建模程序代码 基于DDPG(深度确定性梯度策略)算法的电公司竞价策略研究 关键词:DDPG 算法 深度强化学习 电力市场 发电商 竞价 ,DDPG算法;深度强化学习;电力市场;发电商;竞价,基于DDPG算法的电力市场深度决策建模程序代码 在电力市场中,竞价策略对发电商的利润和市场的整体效率具有重要影响。近年来,随着深度强化学习算法的发展,发电商竞价策略的研究进入了一个新的阶段。深度强化学习算法,尤其是深度确定性梯度策略(DDPG),在处理连续动作空间的复杂决策问题时表现出了独特的优势。本研究旨在探讨DDPG策略在电力市场发电商竞价中的应用,通过构建基于DDPG的竞价模型,实现在动态变化的电力市场环境下,发电商的最优竞价策略。 深度强化学习结合了深度学习和强化学习的优点,能够处理高维状态空间和动作空间的决策问题。在电力市场中,发电商需要根据市场的实时供需情况、竞争对手的行为、成本信息等多维信息做出决策,这为深度强化学习提供了良好的应用场景。DDPG算法通过使用深度神经网络来近似策略函数和价值函数,能够处理连续动作空间,并通过与环境的交互来学习最优策略。 在电力市场竞价模型中,发电商需要决定在每个时段提供多少电能以及相应的报价。一个有效的竞价策略能够帮助发电商在满足市场需求的同时最大化其利润。DDPG算法通过构建一个智能体(Agent),使其在与电力市场环境的交互中学习到最优的竞价策略。智能体通过经验回放和目标网络技术来稳定学习过程,并采用actor-critic架构来平衡探索和利用。 研究中,发电商的竞价模型考虑了市场电价的波动、发电商的成本结构、竞争对手行为等因素,通过模拟电力市场环境的动态变化,评估DDPG算法在不同场景下的性能。实验结果表明,基于DDPG算法的竞价策略能够在复杂的市场环境下实现高效的资源分配和利润最大化。 此外,本研究还对DDPG算法在电力市场竞价中的应用进行了深入的分析,探讨了算法参数的调整对策略性能的影响,以及如何提高算法的稳定性和收敛速度。研究成果不仅为发电商提供了一种新的竞价策略设计方法,也对电力市场运营机构和监管机构提供了决策支持,帮助其更好地理解和预测市场参与者的行为。 研究成果的文档包括了对DDPG算法理论基础的介绍、电力市场竞价环境的建模、算法实现的具体步骤、实验设计和结果分析等部分。此外,还提供了相关程序代码的实现细节,为其他研究者或实际操作者提供了可复现的研究成果和实践指导。 电力市场竞价模型和策略的研究对于提升电力市场运行效率、促进清洁能源的消纳、保障电力系统的稳定运行具有重要意义。随着深度强化学习技术的不断进步,未来在电力市场中的应用前景将更加广阔,值得进一步深入探索。
2025-09-24 14:31:12 1.81MB xhtml
1
机器学习作为人工智能的一个重要分支,其核心概念可概括为计算机程序通过经验自我改进的自动化过程。机器学习的基本概念涉及对其数学定义、性质及其物理意义的深入理解。在算法应用方面,机器学习涵盖广泛,包括但不限于对语言、文字、图像、场景、自然物体等进行识别和认知学习,以及推理、决策等复杂智能行为。此外,机器学习的推广能力和容错性是其两个显著特点,这些能力使得机器学习系统能够在有限的样本集基础上,对整个世界的观测对象集合进行模型推算,从而尽可能真实地反映这个世界。 机器学习的研究意义深远,正如《Science》2001年的一篇论文所述,机器学习对于科学研究的各个环节都有相应的发展,并有可能实现从假设生成、模型构造到决定性实验的自动化。目前,机器学习研究在许多基本论题上取得了显著进展,并有望在未来持续稳定发展。机器学习算法的多样性和复杂性使得它们在众多领域中发挥着关键作用。不同的机器学习算法之间存在着明显的差异和特定的应用场景,比如决策树、神经网络、支持向量机、聚类算法等。这些算法在处理不同类型的数据和解决不同问题时表现出不同的优势和局限性。因此,了解和比较各种算法的性能特点对于选择适合的机器学习方法至关重要。 机器学习算法的分析比较不仅包括对各自性能的评估,还包括对各自适用条件和限制的考量。对于机器学习可能的发展方向,除了提高现有算法的性能和效率,还包括开发新的算法以适应更复杂的问题和应用场景。为了支持这些研究和实践,众多经典的机器学习参考书为研究人员和实践者提供了理论和实践上的指导。例如,《机器学习》一书为理解机器学习的基础提供了详细的论述,而《神经网络与机器学习》则深入探讨了机器学习与神经网络之间的联系。 机器学习作为一种能够使计算机通过经验学习并提高性能的技术,其算法的多样性、理论基础的丰富性以及在各个领域的广泛应用性共同构成了这一领域的核心价值。随着研究的不断深入和技术的发展,机器学习预计将在未来科学研究和应用中扮演更加重要的角色。
2025-09-21 10:33:56 7.15MB
1
Matlab迁移学习算法助力轴承故障诊断:准确率高达98%,附带详细注释的程序,基于Matlab的迁移学习滚动轴承故障诊断系统:高准确率,简易操作,Matlab 基于迁移学习的滚动轴承故障诊断 1.运行环境Matlab2021b及以上,该程序将一维轴承振动信号转为二维尺度图图像并使用预训练网络应用迁移学习对轴承故障进行分类,平均准确率在98%左右。 2.使用MATLAB自带的Squeezenet模型进行迁移学习,若没有安装Squeezenet模型支持工具,在命令窗口输入squeezenet,点击下载链接进行安装。 3.程序经过验证,保证程序可以运行。 4.程序均包含详细注释。 ,Matlab; 迁移学习; 滚动轴承故障诊断; 一维振动信号转换; 二维尺度图图像; 预训练网络; Squeezenet模型; 平均准确率; 程序验证; 详细注释。,基于Matlab的迁移学习轴承故障诊断系统:振动信号二维化与Squeezenet应用
2025-09-21 09:03:14 2.16MB
1
内容概要:本文介绍了基于Kerala数据集的洪水暴雨内涝预测模型,旨在利用机器学习算法预测洪水发生的可能性。文中详细探讨了五种机器学习算法——KNN分类、逻辑回归、支持向量机、决策树和随机森林的具体应用及其优劣。通过对Kerala地区的降雨数据进行建模和验证,最终选出了表现最优的模型。文章不仅提供了完整的代码示例和注释,还涵盖了数据预处理、特征选择、模型训练与评估等多个关键环节。 适合人群:对机器学习感兴趣的研究人员、数据科学家以及希望了解如何运用机器学习解决实际问题的技术爱好者。 使用场景及目标:适用于需要进行自然灾害预测的机构和个人,特别是那些关注洪水、暴雨和内涝等气象灾害的人群。通过学习本文,读者能够掌握如何构建和优化机器学习模型,从而为防灾减灾提供科学依据。 其他说明:虽然本文主要聚焦于洪水预测,但它所涉及的方法论同样适用于其他类型的自然灾难预测任务,如地震预警、台风路径预测等。此外,文中提供的代码和数据集可以帮助读者快速上手实践,进一步加深对机器学习的理解。
2025-09-11 09:44:22 644KB 机器学习 数据挖掘 决策树 随机森林
1