人工智能是指通过计算机系统模拟人类的智能行为,包括学习、推理、问题解决、理解自然语言和感知等。 大数据指的是规模巨大且复杂的数据集,这些数据无法通过传统的数据处理工具来进行有效管理和分析。 本资源包括重邮人工智能与大数据导论实验课相关实验课:Python 控制结构与文件操作,Python 常用类库与数据库访问,Python 网络爬虫-大数据采集,Python 数据可视化,Python 聚类-K-means,Python 聚类决策树训练与预测,基于神经网络的 MNIST 手写体识别 重庆邮电大学通信与信息工程学院作为一所专注于信息科学技术和工程的高等教育机构,开设了关于人工智能与大数据的导论实验课程。该课程旨在为学生提供实践操作的机会,通过实验课的方式加深学生对人工智能与大数据相关知识的理解和应用能力。 课程涉及到了人工智能的基本概念,这是计算机科学领域中一个非常重要的分支。人工智能的研究包括多个方面,如机器学习、自然语言处理、计算机视觉、专家系统等。其中机器学习是指让计算机通过数据学习,不断改进其性能指标的方法。人工智能技术的应用领域极为广泛,包括但不限于自动驾驶汽车、智能语音助手、医疗诊断支持系统等。 大数据是一个相对较新的概念,它涉及到对规模庞大且复杂的数据集进行存储、管理和分析。这些数据集的规模通常超出了传统数据处理软件的处理能力。大数据的分析通常需要使用特定的框架和算法,例如Hadoop和Spark等。通过对大数据的分析,可以发现数据之间的关联性,预测未来的发展趋势,从而为决策提供支持。 本实验课程具体包含了多个实验内容,涵盖了以下几个方面: 1. Python 控制结构与文件操作:这部分内容教会学生如何使用Python编程语言中的控制结构来处理数据,并进行文件的读写操作。控制结构是编程中的基础,包括条件语句和循环语句等,而文件操作则涉及对数据的输入输出处理。 2. Python 常用类库与数据库访问:在这一部分,学生将学习Python中的各种常用类库,并掌握如何通过这些类库与数据库进行交互。数据库是数据存储的重要方式,而Python提供了多种库来实现与数据库的连接和数据处理。 3. Python 网络爬虫-大数据采集:网络爬虫是数据采集的一种手段,通过编写程序模拟人类访问网页的行为,从而自动化地从互联网上收集信息。这对于大数据分析尤其重要,因为大量的数据往往来源于网络。 4. Python 数据可视化:数据可视化是将数据转化为图形或图像的处理过程,目的是让数据的分析结果更加直观易懂。Python中的Matplotlib、Seaborn等库能够帮助学生创建丰富的数据可视化效果。 5. Python 聚类-K-means:聚类是一种无监督学习方法,用于将数据集中的对象划分为多个簇。K-means算法是聚类算法中的一种,它通过迭代计算使聚类结果的内部差异最小化。 6. Python 聚类决策树训练与预测:决策树是一种常用的机器学习算法,它通过一系列的问题对数据进行分类。在本实验中,学生将学习如何使用决策树进行数据训练和预测。 7. 基于神经网络的 MNIST 手写体识别:MNIST数据集是一个包含了手写数字图片的数据集,常用于训练各种图像处理系统。本实验将介绍如何使用神经网络对这些图片进行识别,这是深度学习中的一个重要应用。 以上内容涵盖了人工智能与大数据领域中一些核心的技术和应用,通过这些实验内容,学生能够更深入地理解理论知识,并在实践中提升解决问题的能力。 此外,报告中还提及了需要学生自行配置环境的部分。这是因为人工智能与大数据处理通常需要特定的软件环境和库的支持。例如,进行深度学习实验时,可能需要安装TensorFlow、Keras或其他深度学习框架。而进行数据可视化实验,则可能需要安装相应的绘图库。 重庆邮电大学的这份实验课报告,不仅让学生了解了人工智能与大数据的基本理论知识,还通过实际的编程实践,帮助学生将理论转化为实际操作技能,为未来在相关领域的深入研究和职业发展奠定了坚实的基础。
2026-01-10 00:38:43 24.46MB python 人工智能
1
python3入门AI人工智能,此项目是针对初学者设计的一套全面的Python编程与人工智能技术教程,包含完整源码。 本课程的重点在于引导学员掌握Python 3的基础,并深入理解机器学习和深度学习的基本概念与实践技巧。 Python3入门AI人工智能教程为初学者提供了一套全面的学习路径,旨在帮助学员从零开始掌握Python编程语言,并深入了解人工智能领域中的机器学习和深度学习。此教程不仅包括了基础的Python编程内容,还涵盖了人工智能的相关理论和实践技术,使其成为对AI感兴趣的编程初学者的理想选择。 教程首先引导学员学习Python的基础知识,这包括了Python的基本语法、数据结构、控制流程、函数定义、类和对象等。掌握这些内容对于后续学习人工智能技术至关重要,因为它们是实现各种AI算法和模型的基石。在学习这些基础知识的同时,教程还会通过具体的例子来展示如何将这些概念应用于实际问题解决中。 随后,教程将过渡到人工智能的核心领域,即机器学习。学员将学习机器学习的基本概念,包括监督学习、非监督学习、强化学习等,以及如何使用Python实现常见的机器学习算法,如线性回归、决策树、支持向量机和神经网络等。通过实际案例的分析和动手实践,学员将逐步掌握如何对数据进行预处理、模型的选择、训练、评估和优化。 深度学习部分是教程的进阶内容,这部分内容将指导学员如何使用Python构建深度神经网络。这不仅包括了理论知识的讲解,例如神经网络的结构、激活函数、损失函数、优化算法等,还包括了使用流行深度学习框架如TensorFlow或PyTorch来搭建复杂模型的实践。学员将能够理解深度学习在图像识别、自然语言处理和语音识别等领域的应用。 整个教程贯穿了大量的实例代码和项目实践,使学员能够在解决问题的过程中巩固所学知识,并加深对Python编程和人工智能技术的理解。此外,教程的结构设计注重循序渐进,由浅入深,帮助学员在学习中逐步建立起自信心和解决问题的能力。 教程还可能会包含一些关于人工智能最新进展的讨论,例如强化学习的最新算法、深度学习在医疗和金融领域的应用等,让学员对人工智能的未来发展有一个初步的认识。 Python3入门AI人工智能教程是一套全面且实用的学习资源,不仅适合编程初学者,也适合那些希望深入了解人工智能技术的专业人士。通过本教程的学习,学员将能够掌握Python编程技能,并对人工智能技术有一个系统的认识和实践能力的提升。
2025-12-19 01:54:07 443KB python 人工智能 AI人工智能
1
基于MADRL的单调价值函数分解(Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning)QMIX 是一种用于多智能体强化学习的算法,特别适用于需要协作的多智能体环境,如分布式控制、团队作战等场景。QMIX 算法由 Rashid 等人在 2018 年提出,其核心思想是通过一种混合网络(Mixing Network)来对各个智能体的局部 Q 值进行非线性组合,从而得到全局 Q 值。 在多智能体强化学习中,每个智能体都需要基于自身的观测和经验来学习策略。在一个协作环境中,多个智能体的决策往往相互影响,因此仅考虑单个智能体的 Q 值并不足够。直接对整个系统的 Q 值进行建模在计算上是不可行的,因为状态和动作空间会随着智能体数量呈指数增长。
2025-07-15 20:18:31 112KB 网络安全 强化学习 python 人工智能
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2025-05-17 16:18:51 7.04MB python 人工智能 ai
1
【MADRL】面向角色的多智能体强化学习(ROMA)算法代码 =================================================================== 包含ROMA算法实现的项目代码 =================================================================== 在多智能体系统中,如何让各个智能体有效协作、合理分工,最大化整体性能是一个核心问题。面向角色的多智能体强化学习(Role-Oriented Multi-Agent Reinforcement Learning, ROMA) 算法正是为了解决这一问题而设计的。         在 ROMA 中,“角色”(Role) 是多智能体协作中的核心概念。智能体被分配不同的角色,每个角色决定智能体在任务中的具体职责和行为模式。通过这种角色导向的方式,ROMA 试图提高多智能体系统中的协作效率,同时使得策略学习更加稳定和高效。
2025-05-14 20:36:07 113KB python 人工智能 强化学习
1
在本实践教程中,我们将深入探讨“Python 语音识别系列-实战学习-DFCNN-Transformer的实现”,这是一项结合了深度学习技术与自然语言处理的创新应用。DFCNN(Deep Fusion Convolutional Neural Network)和Transformer是两种在语音识别领域表现出色的模型,它们能够高效地处理序列数据,尤其是对于语音信号的特征提取和转录具有显著优势。 让我们了解**Python**在语音识别中的角色。Python是一种广泛应用于数据分析和机器学习的编程语言,拥有丰富的库支持,如TensorFlow、PyTorch和Keras等,这些库使得构建和训练复杂的神经网络模型变得相对简单。在语音识别领域,Python的SpeechRecognition库是一个常用的工具,它允许开发者轻松地将音频文件转换为文本。 接着,我们讨论**人工智能**在语音识别中的应用。语音识别是AI的一个重要分支,旨在将人类的语音转化为机器可理解的文本。近年来,随着深度学习的发展,语音识别的准确率得到了显著提升,尤其是在自动语音识别系统(ASR)中,深度学习模型已经成为主流。 **DFCNN**是一种深度学习架构,它结合了卷积神经网络(CNN)的优势。CNN在图像处理领域表现出色,能有效地提取局部特征。在语音识别中,DFCNN通过多层融合的卷积层捕捉声音信号的不同频段特征,从而提高模型的识别性能。此外,DFCNN还可能包含残差连接,这有助于梯度传播和模型的快速收敛。 **Transformer**模型是另一种革命性的深度学习架构,最初被提出用于机器翻译。Transformer的核心是自注意力机制,它能处理输入序列的全局依赖性,这对于语音识别至关重要,因为语音信号的每个部分都可能对理解整体含义有贡献。Transformer的并行计算能力也使得大规模训练成为可能,提高了模型的泛化能力。 在实践学习中,你将学习如何利用Python和这些深度学习框架来实现DFCNN和Transformer模型。这可能包括以下几个步骤: 1. **数据预处理**:获取音频数据集,进行采样率调整、分帧、加窗、梅尔频率倒谱系数(MFCC)转换等操作,将声音信号转化为适合模型输入的特征表示。 2. **模型构建**:利用TensorFlow或PyTorch等库构建DFCNN和Transformer的网络结构,包括卷积层、自注意力层以及全连接层等。 3. **模型训练**:设置合适的优化器、损失函数和学习率策略,对模型进行训练,并监控验证集上的性能。 4. **模型评估与调优**:使用测试集评估模型的识别效果,根据结果调整超参数或模型结构。 5. **部署应用**:将训练好的模型集成到实际应用中,如语音助手或实时语音转文字系统。 在这个过程中,你将不仅学习到深度学习的基本原理,还会掌握将理论应用于实际项目的能力。这个实践教程为你提供了一个宝贵的平台,让你能够在语音识别这一前沿领域深化理解并提升技能。通过不断探索和实验,你将能够构建出更高效、更精准的语音识别系统。
2025-04-16 09:07:26 511.31MB python 人工智能 语音识别
1
数据量:110个样本 标注文件格式:xml 解析脚本地址:https://gitcode.com/DataBall/DataBall-detections-100s/overview 运行方式: 设置脚本数据路径 path_data 运行脚本:python demo.py 目前数据集暂时在该网址进行更新: https://blog.csdn.net/weixin_42140236/article/details/142447120?spm=1001.2014.3001.5501 在深度学习和计算机视觉领域中,目标检测技术是实现图像内容理解和分析的核心技术之一,其主要功能是识别图像中特定物体的位置,并进行类别标注。鲨鱼检测作为目标检测应用中的一个专项领域,对海洋保护、生态监控和安全预警等领域具有重要意义。为了支持这一领域研究的发展,"数据集-目标检测系列-鲨鱼检测数据集 shark-DataBall"应运而生。 该数据集包含110个样本,每个样本都由人工精确标注,标注文件格式为xml,这种格式广泛应用于目标检测的标注工作,因为它能够详细记录物体的位置信息(包括边界框的坐标)和类别信息。数据集的标注质量直接影响到机器学习模型的训练效果和检测准确性,因此,高质量的数据标注是目标检测任务取得成功的关键。 为了更好地使用这份数据集,开发者提供了相应的解析脚本,并托管在指定的gitcode仓库地址。开发者鼓励使用者设置好数据路径后,运行提供的demo.py脚本来加载数据集,并进行后续的模型训练与评估。这样的一站式解决方案大大降低了研究者和开发者入门的难度,使得非专业人士也能够尝试使用这份数据集进行鲨鱼检测研究。 此外,值得注意的是,这份数据集的更新信息主要通过指定的CSDN博客进行发布。CSDN是中国最大的IT社区和服务平台,这里的信息更新能够确保研究者及时获得数据集的最新版本和相关进展,从而保证其研究工作始终处于前沿。 从应用的角度来看,鲨鱼检测数据集shark-DataBall的出现,不仅能够促进相关领域的技术进步,还能够在实际应用中发挥重要作用。例如,在海洋生物研究领域,通过对鲨鱼的精确识别和数量统计,研究人员能够更好地掌握鲨鱼的活动规律和栖息地变化;在旅游安全领域,鲨鱼检测技术可以被用于海滩安全预警系统,及时发现并警告游客鲨鱼的存在,减少事故发生的可能;此外,对于航海运输行业,鲨鱼检测技术的应用可以提前发现鲨鱼,避免因鲨鱼袭击而导致的航海事故。 数据集的标签包括"数据集"、"目标检测"、"鲨鱼检测"、"python"和"人工智能"。这些标签准确地概括了数据集的核心内容和应用场景。其中"数据集"和"目标检测"代表了这份材料的基本性质和研究范围;"鲨鱼检测"体现了这份数据集的专业性和针对性;"python"强调了在数据集操作和机器学习模型开发过程中所采用的主要编程语言;而"人工智能"则是目标检测技术所属的高阶领域,揭示了鲨鱼检测技术在智能分析和决策支持中的潜在应用。 在机器学习和深度学习框架中,python语言因其简洁易学和丰富的库支持而受到广泛青睐。在目标检测领域,有多个成熟的框架可供选择,如TensorFlow、PyTorch等,它们提供了从数据预处理、模型构建到训练和部署的全套工具和接口。而结合这份数据集,研究者可以使用这些工具进行鲨鱼检测模型的开发和优化。 "数据集-目标检测系列-鲨鱼检测数据集 shark-DataBall"的推出,为鲨鱼检测领域的研究和应用提供了宝贵的数据资源和便捷的使用方式。随着人工智能技术的不断进步,我们有理由相信,这份数据集将在未来的发展中扮演更加重要的角色。
2025-04-14 19:40:12 2.91MB 数据集 目标检测 python 人工智能
1
内容概要 本资源提供了一个完整的 Flappy Bird 游戏开发项目,并结合强化学习算法(Q-Learning)实现了一个自动玩 Flappy Bird 的 AI。项目包括以下内容: 游戏开发:基于 Pygame 的 Flappy Bird 游戏实现,包含小鸟、管道、背景、音效等元素。 强化学习算法:使用 Q-Learning 算法训练 AI,使其能够自动玩 Flappy Bird。 代码与资源:完整的 Python 代码、游戏图片、音效资源。 适用人群 游戏开发爱好者:对 Pygame 游戏开发感兴趣的开发者。 强化学习初学者:希望学习并实践 Q-Learning 算法的学生或开发者。 AI 爱好者:对游戏 AI 实现感兴趣的开发者。 使用场景及目标 学习 Pygame 游戏开发:通过本项目,可以学习如何使用 Pygame 开发一个简单的 2D 游戏。 实践强化学习算法:通过实现 Q-Learning 算法,理解强化学习的基本原理和应用。 训练游戏 AI:通过训练 AI,使其能够自动玩 Flappy Bird,并不断提升其表现。
2025-02-24 13:57:56 49.53MB AI游戏 Python 人工智能 深度学习
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-11-06 15:18:17 53.44MB python 人工智能 ai
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-11-03 15:17:49 55.39MB python 人工智能 ai
1