人体姿态估计 项目链接:https://link.zhihu.com/?target=https%3A//github.com 1)方向:姿势估计 2)应用:姿势估计 3)背景:基于热图的方法已成为姿势估计的主流方法,因为其性能优越。然而,基于热图的方法在使用缩小尺寸的热图时会遭受显著的量化误差,导致性能有限,并对中间监督产生不利影响。以往的基于热图的方法依赖于额外的后处理来减轻量化误差。一些方法通过使用多个昂贵的上采样层来提高特征图的分辨率,从而提高定位精度。 4)方法:为了解决上述问题,作者创造性地将骨干网络视为一个degradation(降质)过程,并将热图预测重新构造为超分辨率任务。首先提出了SR head,通过超分辨率预测高于输入特征图(甚至与输入图像一致)的热图,以有效减少量化误差,并减少对进一步后处理的依赖。此外,提出了SRPose方法,以逐渐在粗糙到精细的方式中从低分辨率热图和退化特征恢复高分辨率热图。为了减少高分辨率热图的训练难度,SRPose使用SR head来监督每个阶段的中间特征。另外,SR head是一个轻量级通用的头部,适用于自上而下和自下而上的方法。 《轻量级超分辨率头在人体姿态估计中的应用》 人体姿态估计是计算机视觉领域中的一个关键任务,它涉及到识别图像或视频中人物的关键关节位置,如肩、肘、膝等。这一技术广泛应用于动作识别、人机交互、体育分析等领域。近年来,基于热图的方法在姿态估计中取得了显著的进步,其原理是通过预测每个关节的二维概率分布热图,然后通过峰值检测确定关节位置。然而,基于热图的方法存在一个问题,即在使用缩小尺寸的热图时,会引入显著的量化误差,这限制了其性能并影响中间监督的效果。 为了解决这个问题,研究人员提出了一种新的方法,将骨干网络视为一个降质过程,将热图预测重新定义为超分辨率任务。这一创新思路体现在“轻量级超分辨率头”(SR head)的设计上。SR head的目标是通过超分辨率技术预测出的热图具有比输入特征图更高的空间分辨率,甚至可以与原始输入图像分辨率一致,从而有效地减少量化误差,降低对后续后处理步骤的依赖。这种方法不仅提高了定位精度,还简化了模型结构。 SRPose是基于SR head提出的一种逐步恢复高分辨率(HR)热图的策略。它采用粗到细的方式,从低分辨率(LR)热图和降质特征出发,逐渐恢复出更精确的人体关节位置。在训练过程中,SR head用于监督每个阶段的中间特征,帮助模型更好地学习和优化,降低了高分辨率热图训练的复杂度。 此外,SR head的设计具有轻量级和通用性,无论是自上而下的方法(从全局图像信息开始预测关节位置)还是自下而上的方法(从局部特征开始逐渐构建全身结构),都能很好地适应。实验结果表明,SRPose在COCO、MPII和Crowd-Pose等标准数据集上超越了现有的基于热图的方法,证明了其在人体姿态估计领域的优越性。 这项工作展示了超分辨率技术在解决基于热图的人体姿态估计方法中量化误差问题上的潜力。通过轻量级的SR head设计和逐步恢复策略,模型能够在保持高效的同时提升姿态估计的准确性。这一研究为未来的人体姿态估计技术发展提供了新的思路和方向,有望在实际应用中实现更准确、更快速的人体姿态识别。
2025-04-27 17:56:11 840KB 人体姿态估计
1
data_3d_h36m.npz,用于姿态识别
2024-05-03 16:02:58 146.08MB 姿态识别 pose
1
“超过100 FPS的多人3D姿势估计的跨视图跟踪”数据集 注意:回购包含本文中使用的数据集,包括Campus,Shelf,StoreLayout1,StoreLayout2。 连同数据一起,我们提供了一些脚本来可视化2D和3D数据,并评估结果。 不包括源代码,因为这是一个商业项目,如果您有兴趣,请在找到更多信息。 数据集 在这里,我们提供了四个数据集,包括 校园: : 架子: : StoreLayout1:由AiFi Inc.提出。 StoreLayout2:由AiFi Inc.提出。 为了方便起见,您可以一键式从找到并下载它们。 数据结构 对于每个数据集,目录的结构组织如下 Campus_Seq1 ├── annotation_2d.json ├── annotation_3d.json ├── calibration.json ├── detection.json ├─
2024-04-16 17:13:16 21KB Python
1
这个项目是一个基于YOLOv8-Pose的姿态识别系统,专门用于识别和分析人体姿态。项目采用了最新的YOLOv8-Pose算法,结合了COCO数据集的8种常见姿态,能够快速准确地识别人体的各种姿态。这个可以作为一个简单的项目案例,后续可以直接换成自己的数据去进行训练。 功能特点: 高效识别:使用了先进的YOLOv8-Pose算法,确保了识别的准确性和效率。 支持多种姿态:能够识别COCO数据集中定义的8种主要姿态。 实时处理能力:项目设计支持实时姿态识别,适用于视频监控、动态分析等场景。 使用方法: 环境要求:详细说明所需的操作系统、依赖库和运行环境。 安装步骤:提供项目安装和配置的具体指导。 运行指南:说明如何启动姿态识别任务,包括命令行参数等。
2024-01-15 10:20:54 30.81MB 数据集
1
Openpose的pth模型文件,包含pose及hands
2023-12-10 23:21:19 634.17MB Openpose
1
研究@ Magic Leap(CVPR 2020,口腔) SuperGlue推理和评估演示脚本 介绍 SuperGlue是在Magic Leap完成的2020 CVPR研究项目。 SuperGlue网络是一个图形神经网络,结合了最佳匹配层,该层经过训练可以对两组稀疏图像特征进行匹配。 此存储库包含PyTorch代码和预训练权重,用于在关键点和描述符之上运行SuperGlue匹配网络。 给定一对图像,您可以使用此存储库在整个图像对中提取匹配特征。 SuperGlue充当“中端”,在单个端到端体系结构中执行上下文聚合,匹配和过滤。 有关更多详细信息,请参见: 全文:PDF: 。 作者: Pa
1
yolov7-pose TensorRT推理配 window平台以及ubuntu平台都可 详细的配置过程请参考主页的博客
2023-04-12 18:07:17 745KB openpose tensorrt
1
matlab肌电信号处理代码EMG手腕姿势分类 EMG分类系统的M文件(计算机Matlab代码)集合,用于根据[1]中所述的来自Myo Armband的随机默认前臂EMG信号来识别九种腕手运动。 该系统使用八个时域特征的线性组合,然后进行线性判别分析(LDA)投影和多层感知器(MLP)分类。 使用Myo Armband中随附的8个主动传感器,对年龄在27±4岁的10位受试者(七名男性,三名女性)的EMG录音进行了开发和测试。 该系统在八个通道的EMG段上运行。 需要Matlab编程环境。 可以在上找到更新。 要引用此系统,请使用参考文献[1,2]。 概述: 一种基于随机获取的前臂EMG信号的九种腕手动作的低复杂度方法。 该方法是通过评估来自八个通道的256段EMG窗口中的八个时域特征而开发的。 来自八个通道的估计特征通过LDA分析进行合并和缩减,并使用数据驱动的MLP方法进行分类。 此处的代码实现了此运动分类系统,该系统已通过EMG记录进行了训练,并记录了来自10个健康受试者的100次训练中的9个运动数据。 快速开始: 使用system_parameters函数在Matlab中设置系统
2023-03-24 17:32:39 224KB 系统开源
1
人体姿态检测总结,Deep Learning-Based Human Pose Estimation: A Survey
2022-12-27 14:32:20 2.51MB poseestimation
1
LASOR: Learning Accurate 3D Human Pose and Shape Via Synthetic Occlusion-Aware Data and Neural Mesh Rendering
2022-12-27 09:30:00 39.75MB 姿态估计
1