标题中的“onnxruntime-gpu-1.18.0-cp38-cp38-linux-aarch64.whl.zip”是一个针对GPU优化的ONNX运行时库的压缩包,版本为1.18.0,适用于Python 3.8,并且是为Linux上的ARM架构(aarch64)设计的。ONNX(Open Neural Network Exchange)是一个开放的模型交换格式,它允许在不同的深度学习框架之间共享和运行模型。ONNX运行时则是用来执行这些模型的库。 描述中提到“适用JetPack 5.1.2”,JetPack是NVIDIA为Jetson系列嵌入式计算平台提供的软件开发套件,包含Linux操作系统、驱动程序、CUDA、cuDNN等。 JetPack 5.1.2是其中的一个特定版本,它包含了对Jetson设备的优化支持。同时,警告不要升级Jetson系统默认的Python 3版本,因为这个版本的ONNX运行时已经针对该特定Python环境进行了编译和优化,升级可能导致兼容性问题。 “标签”中的“linux”表明这是一个与Linux操作系统相关的软件包。 在压缩包内的文件“onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl”是一个Python的whl(wheel)文件,它是预编译的Python包格式,可以直接用pip安装,无需编译源代码。这个文件包含了ONNX运行时的GPU版本,适合在Linux环境下运行GPU加速的深度学习模型。 另一个文件“使用说明.txt”可能是关于如何在JetPack 5.1.2和Python 3.8环境中安装和使用ONNX运行时GPU版的指南。通常,它会包含以下步骤: 1. 确保你的Jetson设备已经更新到JetPack 5.1.2,并且保持Python 3.8不变。 2. 解压下载的“onnxruntime-gpu-1.18.0-cp38-cp38-linux-aarch64.whl.zip”压缩包。 3. 进入解压后的目录,找到“onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl”文件。 4. 使用pip安装whl文件: ``` pip install onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl ``` 5. 安装完成后,你可以通过导入`onnxruntime`模块来使用ONNX运行时,例如: ```python import onnxruntime ``` 6. 根据你的模型,创建会话实例并进行预测: ```python sess = onnxruntime.InferenceSession("path_to_your_model.onnx") output = sess.run(None, {"input_name": input_data}) ``` 7. 查看“使用说明.txt”以获取更多关于配置、性能调优以及解决常见问题的指导。 这个压缩包提供了在NVIDIA Jetson平台上运行ONNX模型所需的GPU加速的ONNX运行时库,适用于那些需要在边缘设备上进行高效推理的工作场景。遵循提供的说明,开发者可以轻松地将预训练的深度学习模型部署到Jetson设备上。
2024-10-24 17:24:00 68.05MB linux
1
标题 "onnxruntime-gpu-1.16.0-cp38-cp38-linux-aarch64" 指的是 ONNX Runtime 的 GPU 版本,版本号为 1.16.0,针对 Python 3.8 的运行环境,并且是专为 Linux 平台上的 ARM64 架构(AARCH64)设计的。ONNX Runtime 是一个高性能的推理引擎,它支持 ONNX(Open Neural Network Exchange)模型格式,用于跨框架执行深度学习模型的预测。 描述中提到,“onnxruntine-gpu 整个编译 Build 目录”,意味着这个压缩包包含了编译构建 ONNX Runtime GPU 版本的所有源代码和构建产物。用户可以使用 C++ 进行 `sudo make install` 命令来安装此库。这通常涉及到下载源码、配置构建环境、编译源代码以及最后将库安装到系统路径中,以便应用程序可以找到并使用它。 关于标签 "linux",这表明该软件是为 Linux 操作系统设计的。Linux 是一种广泛使用的开源操作系统,其稳定性、灵活性和性能使其成为服务器和高性能计算的首选平台。 "C++" 标签提示我们,ONNX Runtime 的 GPU 实现部分使用了 C++ 编程语言,这是一种底层、高效的语言,适合开发这种对性能要求极高的库。同时,C++ 也允许开发者更深入地控制硬件资源,如 GPU,以实现最佳的推理速度。 在压缩包内的 "build" 文件夹,通常包含以下内容: 1. 编译后的库文件(如 .so 或 .a 文件),这些是动态或静态链接库,可供其他程序调用。 2. 头文件(.h 或 .hpp),包含了库的接口定义,供开发者在编写应用时引用。 3. 可执行文件,可能是编译后的测试程序或示例。 4. 配置脚本,用于设置构建环境和编译选项。 5. Makefile 或 CMakeLists.txt,是构建系统的配置文件,指导编译过程。 为了在 Linux 系统上安装 ONNX Runtime GPU 版本,你需要按照以下步骤操作: 1. 确保系统满足依赖项:如 CUDA 和 cuDNN(如果未提供的话),以及其他依赖库如 Protobuf 和 Eigen。 2. 解压下载的压缩包,进入 build 目录。 3. 使用 CMake 配置构建(可能需要指定 CUDA 和 cuDNN 的路径)。 4. 执行 `make` 命令进行编译。 5. 使用 `sudo make install` 安装编译好的库到系统目录。 安装完成后,你可以通过编写 C++ 或 Python 代码,利用 ONNX Runtime 提供的 API 来加载和执行 ONNX 模型,利用 GPU 加速推理过程。这将极大地提升深度学习模型在预测阶段的效率。在实际应用中,ONNX Runtime 可以用于各种场景,如服务器端的在线推理、嵌入式设备的本地推理等。
2024-09-10 10:31:33 407.19MB linux
1
onnxruntime gpu版本推理库文件,包含头文件,lib库文件,dll 动态库文件,用于c++开发
2022-07-30 14:17:54 141.1MB onnx c++
1
自己在jetpack5.0.1版本的nx上build的onnx版本,不是正式版本,可能会在一些环境下出问题。理论上说jetson系列应该都可以安装运行,前提是cuda11.4(使用tensorrt的话需要tensorrt8.4)
2022-05-25 11:07:11 25.01MB linux 源码软件 TensorRT Onnxruntime-gpu
1
onnxruntime_gpu-1.1.2-cp36-cp36m-linux_aarch64.whl 适用arm 64位 linux + python3.6, 可以配合cuda10.0 cudnn7.6.3 用于机器学习等
2021-10-19 13:05:38 14.62MB 机器学习 onnxruntime_gpu
1