DETRs Beat YOLOs on Real-time Object Detection组会汇报 现有的实时检测器一般为基于cnn的架构,在检测速度和准确性上实现了合理的权衡。然而,这些实时检测器通常需要NMS来进行后处理,这通常很难进行优化,而且不够健壮,从而导致检测器的推理速度慢。近年来,基于transformer的检测器取得了显著的性能。然而,DETR的高计算成本问题尚未得到有效的解决,这限制了DETR的实际应用,导致无法充分利用其好处。虽然DETR简化了目标检测流程(pipeline)的过程,但由于模型本身的计算成本高,很难实现实时目标检测。本文重新考虑了DETR,并对其关键组件进行了详细的分析和实验,减少了不必要的计算冗余。提出了一种实时检测器(RT-DETR),RT-DETR不仅在精度和速度方面优于目前最先进的实时检测器,而且不需要后处理,因此检测器的推理速度没有延迟,而且保持稳定,充分利用了端到端检测流程(pipeline)的优势。
2024-05-13 21:28:52 716KB 人工智能
1
聚合视图对象检测 此存储库包含用于3D对象检测的聚合视图对象检测(AVOD)网络的Python实现的公共版本。 ( ,( ,,( ,( 如果您使用此代码,请引用我们的论文: @article{ku2018joint, title={Joint 3D Proposal Generation and Object Detection from View Aggregation}, author={Ku, Jason and Mozifian, Melissa and Lee, Jungwook and Harakeh, Ali and Waslander, Steven}
2024-05-05 15:54:37 24.01MB deep-learning object-detection
1
Detection-Friendly Dehazing: Object Detection in Real-World Hazy
2023-11-10 16:41:07 3.42MB 人工智能
1
在线实例分类器细化(OICR)的多实例检测网络的PyTorch实现 如何开始 git clone http://www.github.com/jd730/OICR-pytorch 依存关系 Python 3.5或更高版本 火炬0.4.0(不是0.4.1) CUDA 8.0或更高 资料准备 PASCAL_VOC 07 + 12 :请按照中的说明准备VOC数据集。 实际上,您可以参考其他任何人。 下载数据后,在文件夹data /中创建软链接。 选择性搜寻 wget https://dl.dropboxusercontent.com/s/orrt7o6bp6ae0tc/selective_search_data.tgz tar -xvf selective_search_data.tgz rm -rf selective_search_data.tgz 将selective_search_
2023-07-19 20:23:35 4.79MB computer-vision pytorch object-detection weakly
1
ml_with_django ml_with_django是一个开源模板,用于通过django应用程序提供机器学习模型。 该项目还包含一个基于django-admin的几乎可用于生产环境的管理仪表板。 您仅需几个步骤,即可使用此模板非常快速地开发基于django的ml应用程序。 该项目使用tensorflow 1.8版本,该版本仍然依赖于旧api版本。 更新到当前的tensorflow版本可能会产生不兼容的冲突。 本文件的内容 截屏 图像管理的管理员后端 日志管理 用户和组权限的屏幕截图 设定(TBD) 移至设置。 预安装 python 3.6.5 点子 virtualenv或virtualwrapper 设置管理员用户并开始使用 默认情况下,Django将创建一个本地sqllite.db并将该数据库用于本地开发。 创建一个超级用户帐户,然后启动应用程序: $ m
2023-05-15 20:30:39 13.55MB machine-learning django object-detection JavaScript
1
伪装物体检测(CVPR2020-Oral) 作者:,,,,,。 0.前言 欢迎加入COD社区! 我们在微信中创建了一个群聊,您可以通过添加联系人(微信ID:CVer222)来加入。 请附上您的从属关系。 该存储库包括详细的介绍,强大的基准(搜索和识别网,SINet)以及用于伪装目标检测(COD)的一键评估代码。 有关伪装物体检测的更多信息,请访问我们的并阅读 / 。 如果您对我们的论文有任何疑问,请随时通过电子邮件与或。 如果您使用SINet或评估工具箱进行研究,请引用本文( ) 0.1。 :fire: 消息 :fire: [2020/10/22] :collision: 可以通过电子邮件( )提供培训代码。 请提供您的姓名和机构。 请注意,该代码只能用于研究目的。 [2020/11/21]已更新评估工具:Bi_cam(cam> threshold)= 1-> Bi_cam(cam> = threshold
1
服务器上的YOLO 此存储库包含在服务器即服务上运行检测算法的代码,并且具有我的方法的实时实现。 自由使用它:) 强烈建议启动并运行Tensorflow-gpu。 在目录内移动之后。 运行项目: 安装虚拟环境 pip install virtualenv 启动虚拟环境 virtualenv venv 激活virtualenv . venv/bin/activate 安装要求 pip install -r requirements.txt 下载并转换yolov3和yolov3-tiny的权重 wget https://pjreddie.com/media/files/yolov3.weights ./yad2k.py yolov3.cfg yolov3.weights yolo.h5 wget https://pjreddie.com/media/files/yol
1
Unity_Detection2AR 一种将对象定位合并到常规计算机视觉对象检测算法中的简单解决方案。 想法:没有太多的开源实时3D对象检测。 这是一个使用“更流行”的2D对象检测,然后使用几个特征点对其进行本地化的示例。 它使用最近发布的进行对象检测,并使用ARFoundation进行AR。 它可以在iOS和Android设备上使用。 目前支持微小的Yolo2和3。 要求 "com.unity.barracuda": "1.0.3", "com.unity.xr.arfoundation": "4.0.8", "com.unity.xr.arkit": "4.0.8", "com.unity.xr.arcore": "4.0.8" 用法 它是在Unity 2020.2.1中开发的,需要具有更新的AR包的产品就绪的梭子鱼。 梭子鱼的预览版似乎不稳定,可能无法正常工作。 在Unity
2023-03-29 10:11:30 79.06MB unity augmented-reality unity3d object-detection
1
任务 鸟瞰(2017)
1
使用 TensorFlow Object Detection API 进行实时目标检测(基于 SSD 模型) 实验目的 使用 TensorFlow Object Detection API 进行实时目标检测(基于 SSD 模型) 任务列表: • 行人识别 • 人脸识别 • 交通灯识别 • 实时检测(平均 FPS>15) • 使用 tflite 将模型移植到嵌入式设备
2023-02-27 18:53:55 32.29MB TensorFlow ObjectDetection 实时目标检测
1