在这个CUG智能优化课设中,学生通过Python编程语言实现了著名的多目标优化算法NSGA-Ⅱ(非支配排序遗传算法第二代),以此来解决CEC-2021(国际计算智能挑战赛)中的复杂优化问题。NSGA-Ⅱ是一种在遗传算法基础上发展起来的高效优化工具,尤其适用于解决多目标优化问题,这些问题通常涉及到多个相互冲突的目标函数,需要找到一组最优解,而非单一的全局最优解。 **NSGA-Ⅱ算法详解** NSGA-Ⅱ的核心思想是基于非支配排序和拥挤距离的概念来寻找帕累托前沿,这是多目标优化问题中的理想解集。算法通过随机生成初始种群,然后进行以下步骤: 1. **选择操作**:NSGA-Ⅱ采用“锦标赛选择”策略,通过比较个体间的适应度值来决定保留哪些个体。适应度值是根据个体在所有目标函数上的表现计算得出的。 2. **交叉操作**:通过“均匀交叉”或“部分匹配交叉”等策略,将两个父代个体的部分基因片段交换,生成新的子代。 3. **变异操作**:应用“位翻转变异”或“区间变异”等方法,对个体的某些基因进行随机改变,增加种群多样性。 4. **非支配排序**:对所有个体进行两两比较,根据是否被其他个体支配,分为不同层级的 fronts。第一层front的个体是最优的,后面的front依次次优。 5. **拥挤距离计算**:在相同层级的front中,为了保持种群多样性,引入拥挤距离指标,衡量个体在目标空间中的分布情况。 6. **精英保留策略**:确保最优解能够传递到下一代,避免优良解的丢失。 7. **新一代种群构建**:结合非支配排序结果和拥挤距离,采用快速解拥挤策略选择最优子代进入下一代种群。 8. **迭代与终止条件**:重复上述步骤,直到达到预设的迭代次数或满足其他停止条件。 **CEC-2021竞赛介绍** CEC(Competition on Evolutionary Computation)是由国际计算智能学会(IEEE Computational Intelligence Society)组织的年度挑战赛,旨在推动计算智能领域的研究和应用。CEC-2021可能包含多个复杂优化问题,如多目标优化、单目标优化、动态优化等,这些问题通常具有高维度、非线性、多模态和不连续的特性。参赛者需要设计和实现优化算法,对这些问题进行求解,评估算法的性能和效率。 通过这个课设,学生不仅能够深入理解NSGA-Ⅱ算法的原理和实现细节,还能通过实际问题的解决,提高解决复杂优化问题的能力。同时,这也为他们提供了参与高水平竞赛的机会,进一步提升其在计算智能领域的研究水平。
2025-05-19 15:35:46 969KB python
1
NSGA-Ⅱ算法大量测试函数实验结果展示
2022-12-14 22:42:50 2.04MB NSGA-Ⅱ算法
1
为了提高能源综合利用效率与分布式可再生能源就地消纳能力,结合能源互联网建设过程中自动需求响应系统的应用趋势,构建了基于自动需求响应和储能的综合能源系统多目标协同优化运行模型,并提出了基于Tent映射混沌优化的NSGA-Ⅱ多目标函数求解算法。将所提模型及求解算法应用于我国某典型园区综合能源系统的实际算例中,结果表明:Tent映射混沌优化NSGA-Ⅱ算法求解此类问题具有可行性;考虑自动需求响应和储能作用的综合能源系统相较于其他3种情景具有显著经济、技术和环境效益,促进了新能源并网消纳。
1
NSGA-Ⅱ(实数编码) gen=500 , pop=500 ,n=12,var-domain=[0,1],fun=3; Convergence metric ????
1
在地基伪卫星定位系统独立组网时,可将其布站问题转换为多目标优化问题求解,以提高系统信号覆盖率、优化基站几何布局为目标,从而达到减少基站数量同时保证良好定位精度的目的。提出了基于带精英策略的非支配排序遗传(NSGA-Ⅱ)算法的伪卫星系统多目标布站方法,通过可视域分析技术确定系统信号覆盖率,并采用一种多矩阵相乘的加权水平精度因子计算方法衡量基站几何布局,最后利用NSGA-Ⅱ算法求解两个优化目标的非支配最优解集。以张家界某山区地形进行仿真,结果显示只需28个基站系统信号覆盖率就可以达到90%,同时能保证系统基站几何布局较优,性能优于普通遗传算法,在实际工程布站应用中有一定的指导意义。
2021-12-20 22:31:06 1.92MB 伪卫星 基站选址 NSGA-Ⅱ
1
混合NSGA-Ⅱ算法求解多目标柔性作业车间调度问题_NSGA调度_NSGA_NSGA-Ⅱ_柔性车间_柔性车间调度.zip
2021-12-14 20:56:21 610KB 源码
提出改进非劣分类遗传算法(NSGA-Ⅱ)在燃煤锅炉多目标燃烧优化中的应用,优化的目标是锅炉热损失及NOx排放最小化。首先,采用BP神经网络模型分别建立了300MW燃煤锅炉的NOx排放特性模型和锅炉热损失模型,同时利用锅炉热态实验数据对模型进行了训练和验证,结果表明,BP神经网络模型可以很好地预测锅炉的排放特性和锅炉的热损失特性。在建立的锅炉排放特性和热损失BP神经网络模型基础上,采用非劣分类遗传算法对锅炉进行多目标优化,针对NSGA-Ⅱ在燃煤锅炉燃烧多目标优化问题应用中Pareto解集分布不理想、易早熟收敛的问题,在拥挤算子及交叉算子上进行了相应改进。优化结果表明,改进NSGA-Ⅱ方法与BP神经网络模型结合可以对锅炉燃烧实现有效的多目标寻优、得到理想的Pareto解,是对锅炉燃烧进行多目标优化的有效工具,同改进前的NSGA-Ⅱ优化结果比较,其Pareto优化结果集分布更好、解的质量更优。
1
同轴送粉激光熔覆工艺的稳定性受诸多因素的影响,其工艺参数难以寻优。通过设计以工艺参数(激光功率、送粉速度、扫描速度)为输入、以反映熔覆层形貌和质量的特征参数为响应的中心复合实验,对比分析了响应曲面法的回归模型与神经网络对单道熔覆结果的预测效果。采用多目标优化算法NSGA-II对三个工艺参数进行优化求解。结果表明:采用优化后的参数进行激光熔覆的修复件表面硬度增大了17.11%,基体热影响区深度减小了13.90%,熔覆效率增大了6.10%。
2021-08-11 11:11:47 12.5MB 激光技术 激光熔覆 工艺参数 神经网络
1
NSGAⅡ算法
2021-05-22 17:13:28 5KB NSGA
1
提出改进非劣分类遗传算法NSGA-Ⅱ在燃煤锅炉多目标燃烧优化中的应用, 优化的目标是锅炉热损失及NOx排放最小化。首先, 采用BP神经网络模型分别建立了300MW燃煤锅炉的NOx排放特性模型和锅炉热损失模型, 同时利用锅炉热态实验数据对模型进行了训练和验证, 结果表明, BP神经网络模型可以很好地预测锅炉的排放特性和锅炉的热损失特性。在建立的锅炉排放特性和热损失BP神经网络模型基础上, 采用非劣分类遗传算法对锅炉进行多目标优化, 针对NSGA-Ⅱ在燃煤锅炉燃烧多目标优化问题应用中Pareto解集分布不理想、易早熟收敛的问题, 在拥挤算子及交叉算子上进行了相应改进。优化结果表明, 改进NSGA-Ⅱ方法与BP神经网络模型结合可以对锅炉燃烧实现有效的多目标寻优、得到理想的Pareto解, 是对锅炉燃烧进行多目标优化的有效工具, 同改进前的NSGA-Ⅱ优化结果比较, 其Pareto优化结果集分布更好、解的质量更优。
1