在这个CUG智能优化课设中,学生通过Python编程语言实现了著名的多目标优化算法NSGA-Ⅱ(非支配排序遗传算法第二代),以此来解决CEC-2021(国际计算智能挑战赛)中的复杂优化问题。NSGA-Ⅱ是一种在遗传算法基础上发展起来的高效优化工具,尤其适用于解决多目标优化问题,这些问题通常涉及到多个相互冲突的目标函数,需要找到一组最优解,而非单一的全局最优解。 **NSGA-Ⅱ算法详解** NSGA-Ⅱ的核心思想是基于非支配排序和拥挤距离的概念来寻找帕累托前沿,这是多目标优化问题中的理想解集。算法通过随机生成初始种群,然后进行以下步骤: 1. **选择操作**:NSGA-Ⅱ采用“锦标赛选择”策略,通过比较个体间的适应度值来决定保留哪些个体。适应度值是根据个体在所有目标函数上的表现计算得出的。 2. **交叉操作**:通过“均匀交叉”或“部分匹配交叉”等策略,将两个父代个体的部分基因片段交换,生成新的子代。 3. **变异操作**:应用“位翻转变异”或“区间变异”等方法,对个体的某些基因进行随机改变,增加种群多样性。 4. **非支配排序**:对所有个体进行两两比较,根据是否被其他个体支配,分为不同层级的 fronts。第一层front的个体是最优的,后面的front依次次优。 5. **拥挤距离计算**:在相同层级的front中,为了保持种群多样性,引入拥挤距离指标,衡量个体在目标空间中的分布情况。 6. **精英保留策略**:确保最优解能够传递到下一代,避免优良解的丢失。 7. **新一代种群构建**:结合非支配排序结果和拥挤距离,采用快速解拥挤策略选择最优子代进入下一代种群。 8. **迭代与终止条件**:重复上述步骤,直到达到预设的迭代次数或满足其他停止条件。 **CEC-2021竞赛介绍** CEC(Competition on Evolutionary Computation)是由国际计算智能学会(IEEE Computational Intelligence Society)组织的年度挑战赛,旨在推动计算智能领域的研究和应用。CEC-2021可能包含多个复杂优化问题,如多目标优化、单目标优化、动态优化等,这些问题通常具有高维度、非线性、多模态和不连续的特性。参赛者需要设计和实现优化算法,对这些问题进行求解,评估算法的性能和效率。 通过这个课设,学生不仅能够深入理解NSGA-Ⅱ算法的原理和实现细节,还能通过实际问题的解决,提高解决复杂优化问题的能力。同时,这也为他们提供了参与高水平竞赛的机会,进一步提升其在计算智能领域的研究水平。
2025-05-19 15:35:46 969KB python
1
基于GABP和改进NSGA-Ⅱ的高速干切滚齿工艺参数多目标优化决策,刘艺繁,阎春平,针对高速干切滚齿过程中的工艺参数优化决策问题,提出一种基于加工工艺样本预测和多目标遗传优化算法的工艺参数优化决策方法。基
2023-03-02 10:00:00 603KB 首发论文
1
NSGA-Ⅱ算法大量测试函数实验结果展示
2022-12-14 22:42:50 2.04MB NSGA-Ⅱ算法
1
为了提高能源综合利用效率与分布式可再生能源就地消纳能力,结合能源互联网建设过程中自动需求响应系统的应用趋势,构建了基于自动需求响应和储能的综合能源系统多目标协同优化运行模型,并提出了基于Tent映射混沌优化的NSGA-Ⅱ多目标函数求解算法。将所提模型及求解算法应用于我国某典型园区综合能源系统的实际算例中,结果表明:Tent映射混沌优化NSGA-Ⅱ算法求解此类问题具有可行性;考虑自动需求响应和储能作用的综合能源系统相较于其他3种情景具有显著经济、技术和环境效益,促进了新能源并网消纳。
1
为提高非支配排序遗传算法(NSGA-Ⅱ)的搜索精度和多样性,借鉴差分进化中加强局部搜索的策略,提出了一种改进的NSGA-Ⅱ算法(LDMNSGA-Ⅱ)。该算法利用拉丁超立方体抽样技术对解种群进行初始化,保证种群的初始分布能够均匀,采用差分进化中的变异引导算子和交叉算子替换NSGA-Ⅱ的交叉算子,加强局部搜索能力和提高搜索精度,同时保留NSGA-Ⅱ中的变异算子,保留算法多样性。四个经典测试函数的仿真结果表明,该算法LDMNSGA-Ⅱ在解决多目标优化问题中表现出了良好的综合性能。
1
NSGA-Ⅱ(实数编码) gen=500 , pop=500 ,n=12,var-domain=[0,1],fun=3; Convergence metric ????
1
6NSGA-Ⅱ算法是 Srinivas 和 Deb 于 2000 年在 NSGA 的基础上提出的,它比 NSGA算法更加优越:它采用了快速非支配排序算法,计算复杂度比 NSGA 大大的降低;采用了拥挤度和拥挤度比较算子,代替了需要指定的共享半径 shareQ,并在快速排序后的同级比较中作为胜出标准,使准 Pareto 域中的个体能扩展到整个 Pareto 域,并均匀分布,保持了种群的多样性;引入了精英策略,扩大了采样空间,防止最佳个体的丢失,提高了算法的运算速度和鲁棒性。
2022-04-02 22:20:34 155KB nsga2matlab NSGA2比 NSGA2拥挤度 NSGA-Ⅱ
电力系统动态环境经济调度(DEED)在节能减排中具有举足轻重的地位。针对NSGA-Ⅱ的不足,提出一种具有可控精英主义的选择操作的改进NSGA-Ⅱ(MNSGA-Ⅱ),在保证精英主义的前提下保证种群的多样性。对模型复杂约束的启发式操作中所遇到的进化受阻问题进行分析,并采用基于前向搜索算子的改进启发式操作解决该问题。利用新型成员函数表征Pareto最优解集中个体的优劣性,选出最佳折中解。经典10机系统算例仿真结果表明,与NSGA-Ⅱ相比,所提MNSGA-Ⅱ具有更佳的全局搜索能力。
1
针对生产过程中生产作业的优化调度问题,以生产质量、效率和成本阈值为约束条件,基于集对分析建立了的生产质量—效率—成本控制的生产作业多目标优化模型;利用快速非支配排序遗传算法(NSGA-Ⅱ)求解优化模型,得到相对确定条件下质量—效率—成本控制的Pareto最优解集。决策者依据实际生产过程需要,为各项生产作业从Pareto最优解集中筛选最合理的调度方案。最后,通过算例仿真验证了结合集对分析与NSGA-Ⅱ的方法解决生产作业多目标优化问题的准确性、有效性和实用性。
1
在地基伪卫星定位系统独立组网时,可将其布站问题转换为多目标优化问题求解,以提高系统信号覆盖率、优化基站几何布局为目标,从而达到减少基站数量同时保证良好定位精度的目的。提出了基于带精英策略的非支配排序遗传(NSGA-Ⅱ)算法的伪卫星系统多目标布站方法,通过可视域分析技术确定系统信号覆盖率,并采用一种多矩阵相乘的加权水平精度因子计算方法衡量基站几何布局,最后利用NSGA-Ⅱ算法求解两个优化目标的非支配最优解集。以张家界某山区地形进行仿真,结果显示只需28个基站系统信号覆盖率就可以达到90%,同时能保证系统基站几何布局较优,性能优于普通遗传算法,在实际工程布站应用中有一定的指导意义。
2021-12-20 22:31:06 1.92MB 伪卫星 基站选址 NSGA-Ⅱ
1