非常好的TV最小化(正则化)算法,值得借鉴
2023-03-03 11:20:43 266KB Total Variation Minimization
1
PyTorch最小化 Pytorch-minimize表示一组实用程序,用于最小化PyTorch中一个或多个变量的标量函数。 它受到SciPy的optimize模块和MATLAB的极大启发。 与SciPy和MATLAB不同,无需提供jacobian和hessian函数来进行pytorch最小化求解器,并且永远不会使用数值近似。 CPU和CUDA均受支持。 目前,仅实现了不受约束的最小化例程。 作者:鲁本·费曼(Reuben Feinman) 乍看上去: import torch from fmin import minimize def rosen ( x ): return torch . sum ( 100 * ( x [..., 1 :] - x [..., : - 1 ] ** 2 ) ** 2 + ( 1 - x [...
2022-07-06 16:52:55 54KB optimization minimization pytorch newton-method
1
ist的matlab代码通过图形切割实现快速近似能量最小化 该存储库包含有关通过Graph Cuts进行快速近似能量最小化的内容。 在图形文件夹中,您会找到许多可以使用的图形。 它们都是由witz tikz和LaTeX制成。 由于缺少一些数字和模板,因此无法编译report_fcv.tex和paper_report.tex。 该代码根据Boykov,Veksler和Zabih的论文实现了交换算法。 该代码是用Python 3编写的。对于Graph-Cut,我们使用。 安装要求: sudo pip install -r requirements.txt 执行是通过以下方式完成的: python minimization.py path/filename.png cycles 周期可以是任意数字。 低于10 ist的东西还不错。 提示:不要使用大于100x100像素的图像,否则会花费很多时间。
2022-06-30 17:10:00 33.56MB 系统开源
1
Convex Analysis and Minimization Algorithms I Fundamentals Authors: Hiriart-Urruty, Jean-Baptiste, Lemarechal, Claude Convex Analysis may be considered as a refinement of standard calculus, with equalities and approximations replaced by inequalities. As such, it can easily be integrated into a graduate study curriculum. Minimization algorithms, more specifically those adapted to non-differentiable functions, provide an immediate application of convex analysis to various fields related to optimization and operations research. These two topics making up the title of the book, reflect the two origins of the authors, who belong respectively to the academic world and to that of applications. Part I can be used as an introductory textbook (as a basis for courses, or for self-study); Part II continues this at a higher technical level and is addressed more to specialists, collecting results that so far have not appeared in books.
2022-02-21 12:57:16 35.1MB Convex Analysis
1
最近,提出了一种贪婪算法,称为最小秩近似原子分解(ADMiRA)。 当矩阵的秩已知时,它解决了低秩矩阵近似问题。 然而,在实际应用中,矩阵的等级通常是未知的。 本文基于最小秩逼近的原子分解,提出了一种用于低秩矩阵完成的秩自适应原子分解算法(RAADLRMC)。 RAADLRMC的优点在于,当未给出矩阵的参数rank-r时,它可以工作。 此外,自适应地减小迭代的步长,以提高效率和准确性。 如我们的实验所示,我们的算法是鲁棒的,并且矩阵的秩可以被准确地预测。
2022-02-14 10:24:39 1.96MB Matrix completion; Rank minimization;
1
去噪声代码matlab python中具有Huber准则的稀疏鲁棒线性回归 此代码说明了将Huber准则用于各种任务的说明。 它包含一个与本文相关的工具箱: Block-wise Minimization-Majorization Algorithm for Huber's Criterion: Sparse Learning and Applications, Esa Ollila and Ammar Mian Submitted to MLSP 2020 conference. 它还有助于提高论文中提出的结果的可重复性。 它提供了matlab和python代码。 警告:Python版本仍在调试中,虽然不如matlab可信,但仍在开发中。 本文的结果是使用matlab版本获得的。 文件的组织 该存储库被分解为两个子目录: matlab /,其中包含matlab代码。 要重现本文介绍的结果,请运行: Simulation_1_Regression_example.m Simulation_1_Image_denoising_example.m python /,其中包含python代码
2021-10-28 08:27:34 3.85MB 系统开源
1
1、Xue Mei 的 Robust Visual Tracking using L1 Minimization; 2、有代码有论文,也有相关论文。 3、代码有大量的中文介绍。不同于其他的源代码。非常适合初学者。 4、希望能一起交流学习
2020-01-03 11:36:00 22.38MB L1最小化 视觉跟踪 稀疏表示 MATLAB
1
Convex Analysis and Minimization Algorithms II Advanced Theory and Bundle Methods Authors: Hiriart-Urruty, Jean-Baptiste, Lemarechal, Claude From the reviews: "The account is quite detailed and is written in a manner that will appeal to analysts and numerical practitioners alike...they contain everything from rigorous proofs to tables of numerical calculations.... one of the strong features of these books...that they are designed not for the expert, but for those who whish to learn the subject matter starting from little or no background...there are numerous examples, and counter-examples, to back up the theory...To my knowledge, no other authors have given such a clear geometric account of convex analysis." "This innovative text is well written, copiously illustrated, and accessible to a wide audience"
2019-12-21 20:24:13 30.46MB Convex Analysis
1
Minimization Methods for Non-Differentiable Functions.K. C. Kiwiel,A. Ruszczynski.1985.pdf
2019-12-21 19:56:19 6.5MB 最小化方法 不可微分函数
1