本文详细介绍了车载毫米波DDMA-MIMO雷达的仿真方案,重点分析了基于Empty-band算法的发射天线通道解调和相位法速度解模糊方案的验证及可行性。文章首先阐述了DDMA-MIMO在车载毫米波FMCW 4D雷达中的重要性,包括其通过动态多普勒域资源分配提升系统性能的能力。随后,详细讨论了系统设计、波形设计、发射天线通道解调、速度解模糊等关键技术,并提供了相应的代码实现和参数设置。最后,总结了鲁棒CA-CFAR算法、DDMA发射天线通道解调算法和相位补偿法速度解模糊算法的优势,以及其在嵌入式平台上的可移植性。 车载毫米波DDMA-MIMO雷达仿真技术是一项结合了动态多普勒域资源分配(DDMA)和多输入多输出(MIMO)技术的雷达系统仿真。DDMA技术在雷达信号处理中扮演着关键角色,能够通过动态分配多普勒域资源来提升整个雷达系统的性能。而MIMO技术通过使用多个发射和接收天线来提高雷达的空间分辨率和数据获取效率。在车载毫米波FMCW(频率调制连续波)4D雷达系统中,这两种技术的结合能够实现更高级别的环境感知能力。 仿真方案中,Empty-band算法被用来实现发射天线通道的解调。该算法的核心在于它能够优化带宽的使用,通过识别和利用频谱中的“空带”来传输数据,从而在不增加额外发射功率的前提下提高系统的检测能力和抗干扰性能。此外,该仿真方案还对速度解模糊算法进行了验证,即使用相位法来解决速度估计中的模糊性问题。这种算法通过分析雷达接收到的信号的相位信息,来精确计算出目标物体的速度,避免了因雷达波的周期性而导致的速度模糊现象。 文章中详细介绍了系统设计的关键部分,包括波形设计、发射天线通道解调和速度解模糊等。系统设计需要确保各个组成部分能够高效协同工作,波形设计则是确保雷达能够有效探测目标并获取必要的信息。通过具体的代码实现和参数设置,作者展示了如何将这些复杂的理论和算法应用到实际的仿真环境中,进而验证了DDMA-MIMO雷达在提高性能方面的潜力。 除了技术细节,文章还总结了多种算法的优势,特别是鲁棒CA-CFAR(恒虚警率)算法和相位补偿法。CA-CFAR算法能够自动调整阈值来适应复杂的环境变化,从而保持对目标的准确检测;而相位补偿法则通过补偿信号的相位差来提高速度解模糊的准确性。这些算法的组合不仅提升了雷达的探测能力,而且增加了系统的鲁棒性。 文章探讨了这些算法和技术在嵌入式平台上的可移植性。嵌入式系统由于其轻量级和低功耗的特点,非常适合车载应用。将DDMA-MIMO雷达仿真技术移植到嵌入式平台,能够使得未来车辆更加智能化,提高自动驾驶系统的安全性和可靠性。 车载毫米波DDMA-MIMO雷达仿真技术通过利用先进的信号处理算法和系统设计,为改善车载雷达性能提供了新的思路和方法。这些技术的整合不仅提升了雷达的探测能力,还确保了其在实际应用中的高效性和可靠性,为未来自动驾驶车辆的安全行驶提供了坚实的技术基础。
1
第五章止交混沌HIⅢo雷达信号 达到最优.因此需要对参数进行折衷选择,以获得具有较好特性的基于混沌系统 的原始生成波形。再进行专门针对发射机特性的优化处理,得到最终的实际发射 波形。 53 2混沌信号带宽设计 Lorenz混沌信号功率谱形状具有如下形式lm】 G(m)一孑1+/1.r万· (54) 该功率谱的log-lo吕图有两条渐进线。低频部分是一条水平渐进线,表示信号相关 性较弱:高频部分是一条斜率为.2的渐近线,即以一20dB/dcc衰减,这两条线在 ∞;1/r处相交。针对特定系统,系数f为一常量,直接与几何因子b相关,因此 更宽平坦的频谱特性需要更大的b值.需要注意的b取值太大会导致信号能量谱混 叠。因此为获得宽带信号.b的取值应尽可能大但又不至于使其产生能量谱混叠为 直。通过大量仿真表明当b=180时.混沌信号的能量谱达到.60dB抗混叠要求且能 够得到较宽的平坦频带。如图5-9所示。 重 ,(MH对 圈5-9参数b一180时的Lorenz混沌序列频谱 信号带宽作为雷达波形的最重要的参数之一(由于与雷达距离分辨率紧密相 关),在信号设计时必须仔细考虑。下面提出三种用于设计混沌信号带宽的方法, 实际应用中可以根据需要选取。 5.3 21改变DAC工作频率 随着现代数字处理技术的快速发展.雷达信号通常都采用数字方式产生,然
2025-11-20 15:55:19 5.83MB MIMO
1
这是论文 “SigT: An Efficient End-to-End MIMO-OFDM Receiver Framework Based on Transformer” 的代码
2025-10-27 17:21:49 20KB 人工智能 mimo ofdm
1
本文综述了工业中广泛应用的多输入多输出(MIMO)系统解耦控制方法,涵盖耦合交互分析与解耦器设计两大类。重点介绍了相对增益阵列(RGA)、直接奈奎斯特阵列(DNA)等交互分析工具,以及静态、动态解耦策略,包括理想、简化与逆解耦技术。同时探讨了针对时滞、非线性、不确定性等复杂系统的特殊解耦方法,如内模控制、模型预测控制与智能解耦算法。文章还总结了各类方法的适用场景、优缺点及实现难点,为不同背景的研究者与工程师提供选型指导。尽管解耦是提升MIMO系统性能的关键手段,但在某些应用中(如飞行器控制)耦合本身可能有益,因此是否解耦需依据具体需求判断。
2025-10-27 17:15:51 1.61MB MIMO 解耦控制 工业应用
1
MIMO雷达是一种多输入多输出雷达系统,它利用多个发射和接收天线来提高雷达系统的性能。MIMO雷达在测量目标的波达方向(DOA)方面具有显著的优势,特别是在多径环境下,能够有效区分直接信号和反射信号。多径效应是指雷达信号在传播过程中遇到障碍物后反射,形成多条路径到达接收点,这些路径的信号可能相互干涉,造成信号质量的波动。在多径环境中准确估计目标的DOA对于雷达系统来说是一个重要的技术挑战。 针对这一挑战,本文提出了基于双向空间平滑的样本复用MIMO雷达低角多径目标DOA估计算法。该算法基于MIMO雷达四路径回波信号模型,通过匹配滤波技术对接收信号进行处理,得到一个虚拟阵列,即等效的阵列接收数据。这种方法的优点在于可以利用MIMO雷达波形分集的特性,有效降低由多径效应引起的波达方向估计误差。 虚拟阵列的构建利用了MIMO雷达的空间分集能力,通过合成虚拟阵元来增加阵列的有效孔径,从而改善波达方向估计的性能。在虚拟阵列的基础上,算法实施了行列复用技术,即同时对虚拟阵列进行横向和纵向的空间平滑处理。这种双向空间平滑的做法可以进一步减少多径效应带来的干扰,提高低信噪比条件下的DOA估计精度。 空间平滑是一种有效的信号处理技术,主要用来抑制阵列信号中由于相干噪声引起的估计误差。在MIMO雷达系统中,空间平滑通过构造一个新的信号协方差矩阵来实现对信号的处理,该矩阵可以通过对原始数据进行加权平均得到,从而使原本因多径效应而相干的信号变得不相干,削弱或去除这些相干噪声的影响。 文章中提到的M-S-S MUSIC算法是一种常用的波达方向估计算法,它基于信号的特征结构,并利用子空间技术来估计目标方向。然而,该算法在低信噪比环境下性能会有所下降。本研究的算法通过空间平滑有效提高了DOA估计的精度,特别是在信噪比小于-12dB的恶劣环境下,能够将均方根误差平均减小1度,显示了显著的性能优势。 关键词中提及的“MIMO雷达”、“多径”、“波达方向估计”和“空间平滑”是雷达信号处理领域的专业术语,反映了本文算法所涉及的核心技术和应用场景。MIMO雷达的应用主要是在无线通信和雷达系统中,利用空间分集提高系统的性能;多径分析则是在雷达和通信信号处理中必须考虑的环境因素;波达方向估计是雷达系统对目标进行定位和跟踪的重要依据;空间平滑技术在雷达信号处理中具有减少干扰、增强信号处理能力的作用。 文章的研究成果对于雷达系统设计、信号处理算法开发以及多径环境下的目标定位等方面都具有重要的理论和实际应用价值。通过改善DOA估计精度,可以有效提升雷达系统的性能,特别是在复杂电磁环境下,对于提高目标检测、跟踪和识别能力具有重要的意义。
2025-10-24 11:09:37 1.52MB 研究论文
1
针对基于阵列协方差矩阵特征分解的子空间类算法存在的问题,提出了一种基于改进空间平滑的新方法。首先介绍了“等效信源”的概念,在此基础上分析了当目标数多于发射阵元数时,一些基于子空间类算法失效的原因;从理论上推导说明了在接收阵元数足够多的情况下,本文算法可突破发射阵元数对可估计目标数的限制的机理,从而使得MIMO雷达在发射阵元数较少时能估计更多的目标。仿真结果表明:本文所提方法具有比TDS算法更好的估计性能。
2025-10-24 10:52:24 752KB 工程技术 论文
1
第二章宽带低噪声VC0的设计 第三章宽带低噪声VCO的设计 本章开始首先从系统角度介绍了VCO的总体设计方案。接着详细阐述了单个VCO电路、输出 与测试Buffer和开关选择阵列的电路拓扑、参数选取与设计要点。然后阐述了VCO的版图设计, 最后对VCO的仿真结果进行了分析。 3.1宽带低噪声VCo总体设计方案 3.1.1宽带VCO的设计方法 本论文所需实现的VCO要求中心频率为2.4GHz,调谐范围为50%以上。如此宽的调谐范围仅 仅靠变容管来实现,需要其具有很陡峭的C.V特性,即需要VCO的增益K。。很大,由此带来严重 的AM.PM转换,恶化相位噪声性能。因此,需要采用开关选择阵列来实现宽带VCO,将本次VCO 的50%的调谐范围划分为几个窄带调谐范围,前提是保证相邻频段有一定的频率重叠范围。 在标准的CMOS工艺中,通过开关选择阵列来实现宽带振荡器主要有三个方法:调谐电容开关 阵列、调谐电感开关阵列和多个窄带压控振荡器组合结构。下面逐一进行介绍。 1)电容切换 电容切换法就是通过电容开关阵列(switched capacitor array,SCA)和一个小变容管来实现宽调 谐范围。如图3.1所示,具有二进制权重的固定电容和MOS开关管构成电容开关支路,由三位开关 控制位S0~S2控制。控制信号决定接入谐振网络的电容数目,电容包括两部分:固定电容C和MOS 开关管构成的开关电容Cd,从而得到离散的频率值。小变容管用以实现频率的微调,调谐范围只需 覆盖两个临近离散频率之间的差值(并有一段重叠区域)即可。对于n位开关控制位,能产生2n个 窄带,对于确定的调谐范围,大大的降低了VCO的增益。 fm“: 图3.1 二进制权重电容开关阵列 以n位开关控制位为例,当开关全部断开,且可变电容为最小电容Cv.rain,振荡频率为最大值 |一= 卜⋯+(2”一l£。占。J“,, 当开关处于闭合状态,并且变容管为最大电容Cv.。积,振荡频率为最小值fmin: 2l (3.1)
2025-10-19 17:32:23 2.93MB CMOS
1
matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随
2025-09-06 11:16:17 880KB matlab 源码
1
MTK公司推出的MT7976CN是一款支持802.11ax(WIFI6)标准的无线射频芯片,它属于MTK主推的WIFI6 AX3000套片系列,该系列包括了MT7981B和MT7531A。MT7976CN芯片的DATASHEET版本为1.3,发布日期为2023年2月10日,该文档由TM Chen完成初版并经过数次修改更新,最新版本中增加了保密级别的说明。文档中包含了修订历史记录、目录、系统概述、引脚定义、电气特性等关键部分。 系统概述部分介绍了芯片的架构和功能模块,包括功能块图和主要特性。引脚定义部分涉及了引脚布局、输入/输出定义及引脚具体定义,为硬件工程师提供了详细的硬件接口信息。电气特性部分则包括了芯片的绝对最大额定值、推荐工作条件、电气特性表、传输线接口要求等,这些信息对于设计和测试阶段至关重要。 MT7976CN是一款采用WIFI6技术的芯片,该技术相较于传统的WIFI5(802.11ac)技术有诸多改进,如更高的数据速率、改善的网络拥堵状况、降低的延迟以及增强的设备容量。WIFI6的引入能够支持更加密集的无线网络环境,如大型会议中心、体育场馆和商业场所等。 MT7976CN芯片支持MIMO(多输入多输出)技术,能够在相同频率上通过多个天线同时发送和接收多个数据流,显著提高了无线通信的速率和可靠性。此外,MT7976CN还支持OFDMA(正交频分多址)技术,它允许将无线信道分成多个更小的子信道,使得多个用户可以同时接入同一信道,这样显著增加了网络的容量和效率。 芯片还支持1024-QAM(正交幅度调制),相比之前的256-QAM技术,可以将数据传输速率进一步提高,因为它能在每个传输周期发送更多的比特信息。另外,MT7976CN支持波束成形技术,这种技术可以提高信号的传输距离和质量,增强信号的定向性和接收灵敏度,尤其是在复杂多干扰的环境中。 MT7976CN芯片可以广泛应用于家用路由器、商业路由器、无线接入点、企业网关、物联网设备以及其他需要高效稳定无线通信的场合。对于硬件工程师而言,此芯片的DATASHEET提供的详细信息对于设计、制造和维护基于MT7976CN的无线通信设备来说是至关重要的。 DATASHEET的更新记录反映了文档逐步完善的过程,反映了从初始版本发布后的逐步修正和完善,为使用这款芯片的工程师提供了可靠的信息来源,并确保了设计过程中的准确性和安全性。芯片所包含的保密级别的说明体现了MTK公司在数据安全方面的考量,保障了产品的安全性和企业数据的机密性。
2025-09-04 10:20:27 1.16MB
1
概述 mimo_composipy是一个python库,用于使用经典层压理论计算复合板。 该库设计为简单,用户友好和有用的。 现在,您可以使用几行python代码执行复合板屈曲计算。 该库是Techmimo项目的创建,用于学习目的。 使用PYPI下载 点安装mimo-composipy 进入PYPI项目: 当前实现 v 0.1.3(2021/02) 当前版本包含: 层实例以计算层板宏观力学行为 层压实例以执行层压计算 buckling_load函数,用于计算复合板的临界屈曲载荷 计算复合板的临界屈曲载荷的critical_buckling函数(这是该函数的第一个版本,效率不高) 您可以使用文档字符串读取其中每个内容。 第一步 应用实例: 在此示例中,我们将根据scretch执行屈曲计算。 考虑以下复合板: 板层机械性能 E_1 = 129500 MPa E_2 = 9370 M
2025-07-31 13:41:15 360KB Python
1