GNU make中文手册 ver - 3.8 第一章:概述 1.1 概述 1.2 准备知识 第二章 GNU make 介绍 2 GNU make 介绍 2.1 Makefile简介 2.2 Makefile规则介绍 2.3 简单的示例 2.4 make如何工作 2.5 指定变量 2.6 自动推导规则 2.7 另类风格的makefile 2.8 清除工作目录过程文件 第三章:Makefile 总述 3 Makefile总述 3.1 Makefile的内容 3.2 makefile文件的命名 3.3 包含其它makefile文件 3.4 变量 MAKEFILES 3.5 变量 MAKEFILE_LIST 3.6 其他特殊变量 3.7 makefile文件的重建 3.8 重载另外一个makefile 3.9 make如何解析makefile文件 3.9.1 变量取值 3.9.2 条件语句 3.9.3 规则的定义 3.10 总结 第四章:Makefile的规则 4 Makefile规则 4.1 一个例子 4.2 规则语法 4.3 依赖的类型 4.4 文件名使用通配符 4.4.1 统配符使用举例 4.4.2 通配符存在的缺陷 4.4.3 函数wildcard 4.5 目录搜寻 4.5.1 一般搜索(变量VPATH ) 4.5.2 选择性搜索(关键字vpath ) 4.5.3 目录搜索的机制 4.5.4 命令行和搜索目录 4.5.5 隐含规则和搜索目录 4.5.6 库文件和搜索目录 4.6 Makefile伪目标 4.7 强制目标(没有命令或依赖的规则) 4.8 空目标文件 4.9 Makefile的特殊目标 4.10 多目标 4.11 多规则目标 4.12 静态模式 4.12.1 静态模式规则的语法 4.12.2 静态模式和隐含规则 4.13 双冒号规则 4.14 自动产生依赖 第五章:规则的命令 5 为规则书写命令 5.1 命令回显 5.2 命令的执行 5.3 并发执行命令 5.4 命令执行的错误 5.5 中断make的执行 5.6 make的递归执行 5.6.1 变量MAKE 5.6.2 变量和递归 5.6.3 命令行选项和递归 5.6.4 -w选项 5.7 定义命令包 5.8 空命令 第六章:Makefile中的变量 6 使用变量 6.1 变量的引用 6.2 两种变量定义(赋值) 6.2.1 递归展开式变量 6.2.2 直接展开式变量 6.2.3 定义一个空格 6.2.4 “?=”操作符 6.3 变量的高级用法 6.3.1 变量的替换引用 6.3.2 变量的套嵌引用 6.4 变量取值 6.5 如何设置变量 6.6 追加变量值 6.7 override 指示符 6.8 多行定义 6.9 系统环境变量 6.10 目标指定变量 6.11 模式指定变量 第七章:Makefile的条件执行 7 Makefile的条件判断 7.1 一个例子 7.2 条件判断的基本语法 7.3 标记测试的条件语句 第八章:make的内嵌函数 8 make的函数 8.1 函数的调用语法 8.2 文本处理函数 8.2.1 $(subst FROM,TO,TEXT) 8.2.2 $(patsubst PATTERN,REPLACEMENT,TEXT) 8.2.3 $(strip STRINT) 8.2.4 $(findstring FIND,IN) 8.2.5 $(filter PATTERN…,TEXT) 8.2.6 $(filter-out PATTERN.,TEXT) 8.2.7 $(sort LIST) 8.2.8 $(word N,TEXT) 8.2.9 $(wordlist S,E,TEXT) 8.2.10 $(words TEXT) 8.2.11 $(firstword NAMES…) 8.3 文件名处理函数 8.3.1 $(dir NAMES…) 8.3.2 $(notdir NAMES…) 8.3.3 $(suffix NAMES…) 8.3.4 $(basename NAMES…) 8.3.5 $(addsuffix SUFFIX,NAMES…) 8.3.6 $(addprefix PREFIX,NAMES…) 8.3.7 $(join LIST1,LIST2) 8.3.8 $(wildcard PATTERN) 8.4 foreach 函数 8.5 if 函数 8.6 call函数 8.7 value函数 8.8 eval函数 8.9 origin函数 8.10 shell函数 8.11 make的控制函数 8.11.1 $(error TEXT…) 8.11.2 $(warning TEXT…) 第九章:执行make 9 执行make 9.1 指定makefile文件 9.2 指定终极目标 9.3 替代命令的执行 9.4 防止特定文件重建 9.5 替换变量定义 9.6 使用make进行编译测试 9.7 Tmake的命令行选项 第十章:make的隐含规则 10 使用隐含规则 10.1 隐含规则的使用 10.2 make的隐含规则一览 10.3 隐含变量 10.3.1 代表命令的变量 10.3.2 命令参数的变量 10.4 make隐含规则链 10.5 模式规则 10.5.1 模式规则介绍 10.5.2 模式规则示例 10.5.3 自动化变量 T10.5.4 T模式的匹配 10.5.5 万用规则 10.5.6 重建内嵌隐含规则 10.6 缺省规则 10.7 后缀规则 10.8 隐含规则搜索算法 第十一章:使用make更新静态库文件 11 更新静态库文件 11.1 库成员作为目标 11.2 静态库的更新 11.2.1 更新静态库的符号索引表 11.3 make静态库的注意事项 11.4 静态库的后缀规则 第十二章 : GNU make的特点 12 GNU make的一些特点 12.1 源自System v的特点 12.2 源自其他版本的特点 12.3 GNU make 自身的特点 第十三章 和其它版本的兼容 13 不兼容性 第十四章 Makefile的约定 14 书写约定 14.1 基本的约定 14.2 规则命令行的约定 14.3 代表命令变量 14.4 安装目录变量 14.5 Makefile的标准目标名 14.6 安装命令分类 第十五章 make的常见错误信息 15 make产生的错误信息 附录1:关键字索引 GNU make可识别的指示符: GNU make函数: GNU make的自动化变量 GNU make环境变量 后序 ### GNU makefile中文手册知识点概览 #### 一、概述 **1.1 概述** - **GNU make** 是一款强大的工具,用于自动化构建软件项目。它通过读取一个或多个 *Makefile* 文件来确定项目的构建顺序,并管理整个构建流程。 - Makefile 文件包含了项目的构建规则和依赖关系。 **1.2 准备知识** - 在深入学习 GNU make 之前,读者应具备基本的编程知识,了解文本编辑器的使用方法以及基本的 shell 脚本编写技巧。 - 对于操作系统命令行界面有一定的熟悉度。 #### 二、GNU make 介绍 **2.1 Makefile简介** - Makefile 是一个文本文件,其中定义了构建项目的规则和目标。 - 它指定了构建过程中的依赖关系,帮助 make 工具决定哪些文件需要被构建,以及构建的顺序。 **2.2 Makefile规则介绍** - **规则** 是 Makefile 的核心组件之一,用于定义目标文件及其依赖文件。 - 规则通常由目标、依赖项和命令组成。 - 示例格式如下: ```makefile target: dependencies command ``` **2.3 简单的示例** - 简单的 Makefile 示例可能如下所示: ```makefile all: prog.o lib.o gcc -o prog prog.o lib.o prog.o: prog.c gcc -c -o prog.o prog.c lib.o: lib.c gcc -c -o lib.o lib.c clean: rm -f prog prog.o lib.o ``` **2.4 make如何工作** - make 工具读取 Makefile 文件,解析其中的规则,并根据文件的时间戳来决定是否需要重新构建某个目标。 - 如果目标比其依赖项更新,则 make 认为该目标是最新的,无需重新构建。 **2.5 指定变量** - **变量** 是 Makefile 中的一个重要概念,可以用来存储路径、文件名或其他值。 - 变量在 Makefile 中被引用时,通常采用 `$(variable)` 或 `${variable}` 的形式。 - 示例: ```makefile CC = gcc CFLAGS = -Wall -g prog: prog.o lib.o $(CC) $(CFLAGS) -o prog prog.o lib.o ``` **2.6 自动推导规则** - make 支持 **自动推导规则**,即根据文件扩展名自动应用预定义的构建步骤。 - 例如,如果 Makefile 中包含 `.c.o` 规则,则 make 可以自动推断出如何从 .c 文件构建 .o 文件。 **2.7 另类风格的makefile** - Makefile 的风格多种多样,可以根据项目的需求和个人偏好进行调整。 - 有些 Makefile 使用更复杂的结构,如条件语句、循环等,以实现更灵活的功能。 **2.8 清除工作目录过程文件** - Makefile 中通常会包含一个名为 `clean` 的规则,用于清理构建过程中产生的临时文件。 - 示例: ```makefile clean: rm -f *.o prog ``` #### 三、Makefile 总述 **3.1 Makefile的内容** - Makefile 通常包含以下内容: - 目标及规则 - 变量定义 - 包含其他 Makefile 文件 - 特殊目标和规则 **3.2 makefile文件的命名** - Makefile 文件通常命名为 `Makefile` 或 `makefile`。 - make 工具默认查找这些文件名。 **3.3 包含其它makefile文件** - 可以使用 `include` 指令来包含其他 Makefile 文件,这有助于组织大型项目的构建脚本。 - 示例: ```makefile include common.mk ``` **3.4 变量MAKEFILES** - **MAKEFILES** 变量用于记录当前 makefile 文件名列表。 - 这个变量主要用于调试目的,帮助理解 make 如何解析 makefile 文件。 **3.5 变量MAKEFILE_LIST** - **MAKEFILE_LIST** 变量用于存储所有已读取的 makefile 文件名。 - 类似于 **MAKEFILES**,但包含了所有文件名。 **3.6 其他特殊变量** - Makefile 中还存在一些特殊的内置变量,如 `$@`、`$<`、`$^` 等,它们在构建过程中具有特殊的意义。 - 例如,`$@` 表示目标文件,`$<` 表示第一个依赖项。 **3.7 makefile文件的重建** - make 工具支持自动检测并重建 makefile 文件。 - 这对于确保 makefile 文件与源代码同步非常有用。 **3.8 重载另外一个makefile** - 可以使用 `-I` 或 `--include` 选项来指定额外的目录,使 make 能够从这些目录中搜索包含文件。 **3.9 make如何解析makefile文件** - **3.9.1 变量取值** - 变量在 Makefile 中被解析和取值的方式。 - 包括直接展开式变量和递归展开式变量。 - **3.9.2 条件语句** - Makefile 支持使用条件语句来根据不同的情况执行不同的构建逻辑。 - **3.9.3 规则的定义** - 规则的定义方式和解析过程。 **3.10 总结** - 本章总结了 Makefile 的基本概念和功能,为后续章节奠定了基础。 #### 四、Makefile的规则 **4.1 一个例子** - 通过示例来展示 Makefile 规则的编写方式。 - 示例通常包括目标、依赖项和命令。 **4.2 规则语法** - 详细介绍了 Makefile 规则的语法结构。 **4.3 依赖的类型** - Makefile 支持多种类型的依赖,包括显式依赖、隐式依赖等。 **4.4 文件名使用通配符** - 介绍了如何在 Makefile 中使用通配符来匹配多个文件。 - 例如,`*.c` 匹配所有 .c 扩展名的文件。 **4.5 目录搜寻** - **4.5.1 一般搜索(变量VPATH)** - 通过设置 VPATH 变量来指定 make 在哪些目录中搜索依赖文件。 - **4.5.2 选择性搜索(关键字vpath)** - 使用 `vpath` 关键字来指定特定目标的搜索路径。 - **4.5.3 目录搜索的机制** - 解释了 make 如何根据指定的路径搜索依赖文件。 - **4.5.4 命令行和搜索目录** - 说明如何通过命令行选项来影响目录搜索行为。 - **4.5.5 隐含规则和搜索目录** - 探讨了隐含规则在目录搜索中的作用。 - **4.5.6 库文件和搜索目录** - 描述了如何搜索库文件。 **4.6 Makefile伪目标** - 伪目标是在 Makefile 中定义的目标,它们不代表实际文件,而是用于触发一系列命令的执行。 **4.7 强制目标(没有命令或依赖的规则)** - 强制目标是 Makefile 中的一种特殊规则,即使没有明确的命令或依赖项也会被执行。 **4.8 空目标文件** - 空目标文件是一种特殊的情况,用于表示没有任何内容的目标。 **4.9 Makefile的特殊目标** - Makefile 支持一些特殊目标,如 `.PHONY`、`.SECONDEXPANSION` 等。 **4.10 多目标** - 介绍如何在一个规则中指定多个目标。 **4.11 多规则目标** - 多规则目标是指一个目标可以在多个规则中出现。 **4.12 静态模式** - **4.12.1 静态模式规则的语法** - 静态模式规则允许使用模式匹配来简化规则的定义。 - **4.12.2 静态模式和隐含规则** - 静态模式规则与隐含规则之间的相互作用。 **4.13 双冒号规则** - 双冒号规则提供了一种机制来覆盖现有的规则。 **4.14 自动产生依赖** - make 支持自动生成依赖项,这对于大型项目特别有用。 #### 五、规则的命令 **5.1 命令回显** - 当 make 执行命令时,可以设置选项让命令在执行前显示出来。 **5.2 命令的执行** - 详细介绍了命令如何被 make 工具执行。 **5.3 并发执行命令** - make 支持并发执行命令,提高了构建效率。 - 可以通过 `-j` 或 `--jobs` 选项指定并行执行的进程数。 **5.4 命令执行的错误** - 介绍了如何处理命令执行过程中的错误。 **5.5 中断make的执行** - 有时需要在特定条件下中断 make 的执行。 **5.6 make的递归执行** - 递归执行是指 make 在执行某个规则时调用另一个 make 进程。 - 这种机制可以用于分层构建大型项目。 **5.7 定义命令包** - 可以定义一组命令作为命令包,在需要的地方重复使用。 **5.8 空命令** - 空命令是 Makefile 中的一个特殊概念,用于定义不需要任何命令执行的目标。 #### 六、Makefile中的变量 **6.1 变量的引用** - 介绍了如何在 Makefile 中引用变量。 **6.2 两种变量定义(赋值)** - **6.2.1 递归展开式变量** - 递归展开式变量会在使用时才被解析。 - **6.2.2 直接展开式变量** - 直接展开式变量在定义时立即被解析。 - **6.2.3 定义一个空格** - 介绍如何在 Makefile 中定义包含空格的变量。 - **6.2.4 “?=”操作符** - 该操作符用于定义条件变量,只有当变量未被定义时才会被设置。 **6.3 变量的高级用法** - **6.3.1 变量的替换引用** - 介绍如何使用变量替换功能。 - **6.3.2 变量的套嵌引用** - 说明如何在一个变量定义中引用另一个变量。 **6.4 变量取值** - 详细介绍了如何在 Makefile 中获取变量的实际值。 **6.5 如何设置变量** - 介绍了在 Makefile 中设置变量的不同方法。 **6.6 追加变量值** - 说明如何向已有的变量追加值。 **6.7 override 指示符** - `override` 指示符用于改变 Makefile 中变量的默认行为。 **6.8 多行定义** - 介绍如何在 Makefile 中定义多行变量。 **6.9 系统环境变量** - 说明如何在 Makefile 中使用系统环境变量。 **6.10 目标指定变量** - 目标指定变量允许为特定的目标定义变量。 **6.11 模式指定变量** - 模式指定变量允许基于文件名模式来定义变量。 #### 七、Makefile的条件执行 **7.1 一个例子** - 通过示例来展示条件执行的使用方法。 **7.2 条件判断的基本语法** - 介绍了 Makefile 中条件判断的基本语法。 **7.3 标记测试的条件语句** - 介绍如何使用条件语句来执行标记测试。 #### 八、make的内嵌函数 **8.1 函数的调用语法** - 介绍了 make 内置函数的调用方式。 **8.2 文本处理函数** - **8.2.1 $(subst FROM,TO,TEXT)** - 用于替换字符串中的子串。 - **8.2.2 $(patsubst PATTERN,REPLACEMENT,TEXT)** - 根据模式匹配替换文本。 - **8.2.3 $(strip STRINT)** - 移除字符串中的空白字符。 - **8.2.4 $(findstring FIND,IN)** - 查找一个字符串在另一个字符串中的位置。 - **8.2.5 $(filter PATTERN…,TEXT)** - 从文本中筛选出匹配模式的单词。 - **8.2.6 $(filter-out PATTERN.,TEXT)** - 从文本中排除匹配模式的单词。 - **8.2.7 $(sort LIST)** - 对列表进行排序。 - **8.2.8 $(word N,TEXT)** - 提取文本中的第 N 个单词。 - **8.2.9 $(wordlist S,E,TEXT)** - 提取文本中从第 S 个到第 E 个单词。 - **8.2.10 $(words TEXT)** - 返回文本中单词的数量。 - **8.2.11 $(firstword NAMES…)** - 提取文本中的第一个单词。 **8.3 文件名处理函数** - **8.3.1 $(dir NAMES…)** - 提取文件名中的目录部分。 - **8.3.2 $(notdir NAMES…)** - 提取文件名中的非目录部分。 - **8.3.3 $(suffix NAMES…)** - 提取文件名的扩展名。 - **8.3.4 $(basename NAMES…)** - 提取文件名的基础部分,去除扩展名。 - **8.3.5 $(addsuffix SUFFIX,NAMES…)** - 在每个文件名后面添加指定的扩展名。 - **8.3.6 $(addprefix PREFIX,NAMES…)** - 在每个文件名前面添加指定的前缀。 - **8.3.7 $(join LIST1,LIST2)** - 将两个列表中的元素组合成新的列表。 - **8.3.8 $(wildcard PATTERN)** - 根据模式匹配找到相应的文件名。 **8.4 foreach 函数** - `foreach` 函数用于在 Makefile 中实现循环操作。 **8.5 if 函数** - `if` 函数用于实现条件判断。 **8.6 call函数** - `call` 函数用于调用其他函数。 **8.7 value函数** - `value` 函数用于返回变量的值。 **8.8 eval函数** - `eval` 函数用于执行动态定义的 Makefile 代码。 **8.9 origin函数** - `origin` 函数用于返回变量的定义来源。 **8.10 shell函数** - `shell` 函数用于在 Makefile 中执行 shell 命令。 **8.11 make的控制函数** - **8.11.1 $(error TEXT…)** - 用于生成错误信息。 - **8.11.2 $(warning TEXT…)** - 用于生成警告信息。 #### 九、执行make **9.1 指定makefile文件** - 说明如何在命令行中指定 Makefile 文件。 **9.2 指定终极目标** - 介绍如何在命令行中指定构建的目标。 **9.3 替代命令的执行** - 介绍如何替代 Makefile 中定义的命令。 **9.4 防止特定文件重建** - 介绍如何防止 make 重新构建某些文件。 **9.5 替换变量定义** - 说明如何在命令行中更改 Makefile 中定义的变量。 **9.6 使用make进行编译测试** - 介绍如何使用 make 进行编译测试。 **9.7 Tmake的命令行选项** - 介绍 make 支持的各种命令行选项。 #### 十、make的隐含规则 **10.1 隐含规则的使用** - 介绍了 make 的隐含规则如何被使用。 **10.2 make的隐含规则一览** - 列出了 make 默认提供的隐含规则。 **10.3 隐含变量** - **10.3.1 代表命令的变量** - 用于指定隐含规则中的命令。 - **10.3.2 命令参数的变量** - 用于指定命令中的参数。 **10.4 make隐含规则链** - 介绍 make 如何处理隐含规则链。 **10.5 模式规则** - **10.5.1 模式规则介绍** - 介绍模式规则的概念。 - **10.5.2 模式规则示例** - 通过示例来展示模式规则的应用。 - **10.5.3 自动化变量** - 介绍模式规则中使用的自动化变量。 - **10.5.4 模式的匹配** - 介绍模式规则中的模式匹配方式。 - **10.5.5 万用规则** - 介绍万用规则的概念。 - **10.5.6 重建内嵌隐含规则** - 说明如何重建内嵌的隐含规则。 **10.6 缺省规则** - 介绍 make 的缺省规则。 **10.7 后缀规则** - 介绍 make 的后缀规则。 **10.8 隐含规则搜索算法** - 详细介绍 make 如何搜索和应用隐含规则。 #### 十一、使用make更新静态库文件 **11.1 库成员作为目标** - 介绍如何将静态库文件的成员作为 Makefile 中的目标。 **11.2 静态库的更新** - 说明如何更新静态库文件。 **11.3 make静态库的注意事项** - 提供了一些在使用 make 构建静态库时需要注意的问题。 **11.4 静态库的后缀规则** - 介绍用于静态库构建的后缀规则。 #### 十二、GNU make的特点 **12.1 源自System v的特点** - 介绍了源自 System v 的 make 特点。 **12.2 源自其他版本的特点** - 介绍了源自其他 make 版本的特点。 **12.3 GNU make 自身的特点** - 重点介绍了 GNU make 的独特特性。 #### 十三、和其它版本的兼容 **13 不兼容性** - 介绍了 GNU make 与其他 make 版本之间可能存在的不兼容性问题。 #### 十四、Makefile的约定 **14 书写约定** - **14.1 基本的约定** - 介绍了 Makefile 书写的基本约定。 - **14.2 规则命令行的约定** - 介绍了规则命令行的约定。 - **14.3 代表命令变量** - 介绍了代表命令的变量约定。 - **14.4 安装目录变量** - 介绍了安装目录变量的约定。 - **14.5 Makefile的标准目标名** - 介绍了 Makefile 中标准目标名称的约定。 - **14.6 安装命令分类** - 介绍了安装命令的分类约定。 #### 十五、make的常见错误信息 **15 make产生的错误信息** - 列出了 make 在运行过程中可能会产生的常见错误信息,并提供了相应的解决方法。 #### 附录 - **关键字索引** - **GNU make函数** - **GNU make的自动化变量** - **GNU make环境变量** 以上是对 GNU makefile 中文手册的主要知识点的总结,涵盖了从 Makefile 的基础知识到高级用法的各个方面。通过学习这些内容,读者可以深入了解如何使用 GNU make 来高效地管理和构建软件项目。
2025-06-21 23:15:42 1.9MB makefile中文手册 makefile
1
"luci-app-filebrowser" 是一个专为OpenWrt或LEDE路由器固件设计的应用程序,主要用于提供Web界面的文件管理功能。这个应用允许用户通过浏览器远程访问和管理其路由器上的文件系统,包括查看、上传、下载、创建、删除文件和目录等操作,极大地提升了用户在管理路由器存储资源时的便利性。 在OpenWrt和LEDE这样的开源路由器系统中,软件包的构建和安装通常依赖于Makefile。"Makefile"是项目构建的核心文件,它包含了编译、链接和其他构建步骤的指令。对于luci-app-filebrowser,Makefile会定义如何将源代码编译成可以在OpenWrt/LEDE环境中运行的应用程序,并指导系统如何安装和配置该应用。 Makefile中的关键部分可能包括以下内容: 1. **TARGET**:指定目标平台,如OpenWrt或LEDE。 2. **PACKAGE**:定义软件包的名称,这里是'luci-app-filebrowser'。 3. **DEPENDS**:列出依赖的库和模块,确保在编译前已经安装。 4. **DESCRIPTION**:提供软件包的简短描述,可能与标题相同。 5. **SECTION**:软件包在软件中心的分类,如“网络”或“实用工具”。 6. **FILES**:定义安装到路由器文件系统中的文件和目录。 7. **POSTinst** 和 **PREinst**:安装后和安装前的脚本,用于执行额外的配置或清理工作。 8. **CONFIGURE_ARGS**:编译时传递给配置脚本的参数,用于自定义编译选项。 在压缩包"luci-app-filebrowser-main"中,我们可以预期包含以下内容: - **src** 目录:存放源代码,包括Lua脚本(用于Luci界面)和可能的C/C++代码(如果应用有后台服务)。 - **luasrc** 目录:存放Luci界面的Lua配置和视图文件,用于构建用户交互界面。 - **root** 目录:包含应用安装到路由器后的文件结构,比如配置文件、启动脚本等。 - **package.mk** 文件:这是Makefile的一个子文件,用于特定软件包的构建规则。 - **README** 或其他文档:提供应用的使用指南和开发者信息。 要安装和使用luci-app-filebrowser,用户或开发者需要编辑OpenWrt的配置文件,添加软件包依赖,然后运行make命令来编译和安装。完成安装后,用户可以通过路由器的Web界面找到这个应用,登录后即可访问和管理文件系统。 luci-app-filebrowser是OpenWrt/LEDE环境中提升用户体验的重要组件,它利用Makefile进行构建和安装,提供了一个方便的Web界面,让用户能够轻松地管理和访问路由器上的文件。
2025-06-18 12:18:55 21KB Makefile
1
【QtProject: Qt项目】 Qt 是一个开源的跨平台应用程序开发框架,由The Qt Company提供,广泛用于构建桌面、移动和嵌入式系统的GUI(图形用户界面)应用。这个"QtProject"是一个学习Qt的实践项目,通过它,你可以深入理解Qt的编程理念和工作流程。 在Qt开发中,`Makefile`扮演着至关重要的角色。`Makefile`是一种自动化构建工具,用于编译和链接源代码,使得开发者能够高效地管理项目构建过程。在Qt项目中,`Makefile`通常是由qmake工具自动生成的,qmake根据项目文件(`.pro`)中的设置来构建`Makefile`,然后通过执行`make`命令来编译项目。 在"QtProject"中,我们可以看到一个名为`QtProject-main`的子文件或目录。这通常表示该项目的主要源代码文件或模块,可能包含`main.cpp`,这是任何C++程序的入口点,负责启动应用并调用Qt的主循环。在`main.cpp`中,你会看到如何初始化Qt应用,创建窗口对象,并可能包含其他组件的实例化。 Qt提供了丰富的控件和类库,如QWidgets、QGuiApplication、QMainWindow等,用于创建用户界面。QWidgets是用于桌面应用的基础,而QGuiApplication和QApplication是Qt应用的核心类,它们处理事件循环和窗口系统交互。QMainWindow是一个复杂的窗口类,常用于构建具有菜单栏、工具栏和状态栏的主应用窗口。 此外,Qt支持信号与槽机制,这是一种强大的事件驱动编程模型,允许对象之间进行通信。当你在一个对象上触发某个动作(例如点击按钮),信号会被发射,与其连接的槽函数将被调用,实现相应功能。 在Qt项目中,你还会遇到头文件(`.h`或`.hpp`)和源文件(`.cpp`)。头文件通常包含类的声明和接口定义,而源文件则实现这些接口的函数。遵循面向对象的设计原则,Qt提倡良好的封装和模块化。 为了调试和测试Qt项目,Qt Creator是一个常用的集成开发环境(IDE),它提供了代码编辑、构建管理、调试和版本控制等功能。此外,Qt还支持QML(Qt Meta Language),这是一种声明式的语言,用于构建富媒体和触控友好的用户界面,尤其适用于移动和嵌入式应用。 "QtProject"是一个学习Qt开发的实践案例,涵盖了Qt的基本概念、控件使用、事件处理、信号与槽机制以及项目构建流程。通过深入研究这个项目,你将能够熟练掌握Qt的开发技能,为创建自己的跨平台应用程序打下坚实基础。
2025-05-10 19:54:12 1.52MB Makefile
1
封装过的makefile系统,不了解makefile编译系统的人也很容易使用。修改.h .hpp文件后不用清除直接编译即可。系统支持make,make all, make clean,make install. 具体使用请参考readme.txt
2025-04-16 07:55:57 3KB makefile
1
### Makefile教程精要 #### 一、Makefile概览 **Makefile**是一种用于自动化构建过程的脚本文件,广泛应用于软件项目管理和自动化构建领域。对于任何希望提高开发效率和减少手动构建工作量的开发者而言,理解并掌握Makefile至关重要。 #### 二、Makefile的重要性 1. **自动化编译**: Makefile能够根据定义的规则自动化编译整个项目,极大地提升了开发效率。 2. **大型工程管理**: 在处理大型项目时,Makefile可以帮助管理复杂的编译规则和依赖关系,确保构建过程的一致性和可靠性。 3. **跨平台支持**: 虽然不同的操作系统和IDE可能有不同的Makefile实现方式,但其核心思想是相通的,使得Makefile具有良好的跨平台特性。 4. **专业素养体现**: 掌握Makefile是衡量一个程序员专业水平的重要指标之一,特别是在Unix/Linux环境下。 #### 三、Makefile的基本原理 - **文件依赖性**: Makefile的核心概念是文件之间的依赖关系。它通过分析文件的最后修改时间来决定哪些文件需要重新编译。 - **规则**: Makefile中定义了多个规则,每个规则指定了特定的目标文件如何从源文件生成。 - **命令**: 规则还可以包含一系列命令,用于执行编译任务或其他操作系统的命令。 - **变量**: Makefile支持变量的使用,可以通过变量来简化规则的编写。 #### 四、Makefile示例解析 假设有一个项目包含8个C源文件和3个头文件,我们需要构建一个可执行文件。以下是一个简单的Makefile示例: ```makefile # 定义源文件和目标文件 SOURCES = main.c util1.c util2.c util3.c util4.c util5.c util6.c util7.c HEADERS = util.h config.h other.h OBJECTS = $(SOURCES:.c=.o) EXECUTABLE = myprogram # 默认目标 all: $(EXECUTABLE) # 编译规则 $(EXECUTABLE): $(OBJECTS) gcc -o $@ $^ $(HEADERS) # 源文件到对象文件的规则 %.o: %.c $(HEADERS) gcc -c -o $@ $< # 清理规则 clean: rm -f $(OBJECTS) $(EXECUTABLE) ``` **解析**: - `SOURCES` 和 `HEADERS`: 分别定义了源文件列表和头文件列表。 - `OBJECTS`: 通过宏替换定义了对象文件列表。 - `EXECUTABLE`: 设置最终生成的可执行文件名称。 - `all`: 定义了默认的构建目标,即构建可执行文件。 - `$(EXECUTABLE)`: 定义了如何从对象文件生成可执行文件。 - `%.o`: 定义了如何从每个C源文件生成对应的对象文件。 - `clean`: 提供了一个清理规则,用于删除所有生成的文件。 #### 五、Makefile进阶技巧 1. **条件语句**: 使用条件语句如 `ifeq`, `ifdef`, `ifndef` 等来控制规则的执行。 2. **循环**: 通过循环结构如 `foreach` 来处理列表或数组。 3. **模式匹配**: 使用模式匹配功能来处理复杂的文件路径和名称。 4. **嵌套调用**: Makefile支持嵌套调用其他Makefile文件,以实现模块化管理。 #### 六、Makefile最佳实践 1. **保持简单**: 尽量保持Makefile简洁易读,避免过度复杂的设计。 2. **使用变量**: 合理利用变量来存储常用的路径、文件名等,减少重复编写。 3. **文档化**: 对于复杂的Makefile,添加必要的注释,方便他人理解和维护。 4. **测试验证**: 在实际部署前,通过小规模测试来验证Makefile的有效性和正确性。 5. **持续集成**: 集成到持续集成/持续部署(CI/CD)流程中,确保自动化构建的一致性和质量。 #### 七、总结 Makefile作为一种强大的自动化构建工具,对于提高软件开发效率、保证构建的一致性和稳定性至关重要。通过对Makefile基本概念的理解以及实际案例的学习,开发者可以更好地利用这一工具来提升项目管理水平和个人技能。随着项目的不断扩大和发展,掌握Makefile将变得越来越重要。
2025-04-14 17:29:03 952KB makefile教程(中文版).pdf
1
文档包含Makefile的基础知识,看完后能够掌握下面三项内容,足够完成自主makefile编写。 1. 简单编译原理(编译过程、预处理阶段、编译阶段、汇编阶段、链接阶段); 2. Makefile的基本语法(Makefile规则、Makefile变量、Makefile的条件执行、Makefile函数、Makefile库的生成和使用); 3. Makefile的执行过程(执行过程解析、依赖关系解析)。 【Makefile基础知识】深入理解Makefile的使用与原理 Makefile是Linux环境下自动化构建和管理项目的强大工具,它能够帮助开发者高效地编译、链接和管理项目中的源代码。掌握Makefile的基础知识,有助于提高软件开发的效率和一致性。 1. **简单编译原理** 编译过程涉及五个主要阶段: - **预处理阶段**:预处理器处理源代码中的`#`指令,如`#include`,将头文件内容插入源文件,生成`.i`文件。 - **编译阶段**:编译器将预处理后的文件转换为汇编语言,生成`.s`文件。 - **汇编阶段**:汇编器将汇编语言转化为机器代码,形成可重定位的目标文件`.o`。 - **链接阶段**:链接器将多个目标文件和库文件合并,生成可执行文件。 - **执行阶段**:运行生成的可执行文件。 2. **Makefile的基本语法** - **显式规则**:定义目标文件及其依赖文件,以及构建目标所需的命令。 - **隐含规则**:预定义的一些通用规则,如编译C程序的默认行为。 - **变量定义**:用于存储重复使用的字符串,减少Makefile的冗余。 - **条件执行**:基于特定条件执行不同的命令。 - **函数**:提供更复杂的逻辑,如文件名操作、字符串处理等。 例如,一个简单的Makefile规则可能如下所示: ```makefile all: helloworld helloworld: helloworld.o gcc -o helloworld helloworld.o helloworld.o: helloworld.c gcc -c helloworld.c ``` 在这个例子中,`all`是默认目标,`helloworld`是目标文件,`helloworld.o`是依赖文件,命令行指令用于编译和链接。 3. **Makefile的执行过程** - **依赖关系解析**:make会查找目标文件对应的规则,并检查依赖文件是否更新过,如果更新,则重新执行相关命令。 - **命令执行**:每次命令前都会添加一个 Tab 键,这是make识别命令的标志。如果命令有多个,用换行符分隔。 4. **Makefile查找规则** make会在当前目录下按顺序查找`GNUmakefile`、`makefile`和`Makefile`,并优先使用找到的第一个。 掌握以上内容,开发者可以编写出符合项目需求的Makefile,实现自动化构建流程,简化开发过程中繁琐的编译和链接步骤。这对于大型项目尤其重要,因为它们通常包含大量源文件和复杂的依赖关系。通过Makefile,可以清晰地定义这些关系,并确保构建过程的一致性和可维护性。同时,Makefile还可以用于清理临时文件、测试和部署等其他任务,是Linux环境下软件开发不可或缺的一部分。
2024-10-19 22:16:52 283KB Linux Makefile
1
### 从ITPUB论坛分享的中文Makefile教程中提炼的知识点 #### 1. Makefile的概念及其重要性 Makefile是一种用于自动化构建过程的脚本文件,它定义了源代码文件之间的依赖关系以及编译规则,使得软件工程能够通过简单的`make`命令实现自动化编译,极大地提升了软件开发效率。在Unix/Linux环境下,掌握Makefile的编写能力是衡量程序员专业性和处理大型项目能力的重要指标。 #### 2. Makefile与文件依赖性 Makefile的核心在于管理文件之间的依赖性,它规定了哪些文件需要先编译、哪些需要后编译以及哪些需要重新编译。这种机制允许Makefile执行复杂的操作,如运行操作系统命令,使其不仅限于编译任务,还能执行更多工程级的操作。 #### 3. 自动化编译的优势 通过Makefile实现的自动化编译,可以显著提高软件开发的效率。一旦Makefile被编写完成,开发者只需输入`make`命令,即可自动处理整个工程的编译流程,无需手动干预每一个编译步骤,从而节省了大量的时间和精力。 #### 4. Make命令工具 Make是一个解释Makefile中指令的命令工具,不同环境下的Make命令可能有所不同,如Delphi的make、Visual C++的nmake和Linux下GNU的make。其中,GNU的make是应用最广泛且遵循POSIX.2标准的版本,因此学习和掌握其语法尤为重要。 #### 5. 程序编译与链接的基本原理 - **编译阶段**:源代码文件首先被编译成中间代码文件,如Windows下的`.obj`文件或Unix下的`.o`文件,这个过程称为编译。编译器关注的是语法的正确性和函数与变量的声明,通常需要告知编译器头文件的位置。 - **链接阶段**:多个中间目标文件(Object File)被链接成可执行文件。链接器主要负责链接函数和全局变量,使用中间目标文件而不是源文件。为简化链接过程,中间目标文件会被打包成库文件(如Windows下的`.lib`文件或Unix下的`.a`文件)。 #### 6. GCC和CC编译器的角色 在基于Unix的系统中,默认使用的编译器通常是GCC(GNU Compiler Collection)和CC(C Compiler)。GCC支持C和C++语言的编译,而CC主要用于C语言的编译。Makefile中会调用这些编译器进行源代码的编译和链接操作。 #### 结论 Makefile是软件开发中不可或缺的一部分,尤其在大型项目中,其自动化构建和管理文件依赖性的能力极为关键。通过理解Makefile的工作原理和编写技巧,程序员能够更高效地管理项目构建流程,提升软件开发的整体效率。此外,熟悉GCC、CC等编译器的使用,也是理解和编写有效Makefile的基础。
2024-10-19 22:16:40 406KB linux makefile
1
Makefile编写精简版本详解 Makefile是Linux系统中的一种脚本文件,用于自动编译和构建项目。下面是Makefile编写精简版本的详细解释: Makefile结构 Makefile文件通常由多个部分组成,每个部分都有其特定的功能。常见的Makefile结构包括: * 目标(Target):指定要编译的目标文件 * 依赖项(Dependency):指定目标文件所依赖的文件 * 命令(Command):指定编译目标文件的命令 src Makefile 在src Makefile中,我们可以看到以下内容: ```makefile Target : main.c mynet.c gcc -c main.c gcc -c mynet.c mv *.o ../obj ``` 这里的Target指定了两个源文件:main.c和mynet.c。然后,使用gcc命令将这两个文件编译成目标文件,并将其移动到../obj目录下。 obj Makefile 在obj Makefile中,我们可以看到以下内容: ```makefile MYSER : main.o mynet.o gcc *.o -o MYSER -lpthread mv MYSER ../bin ``` 这里的Target指定了MYSER目标文件,这个文件依赖于main.o和mynet.o两个文件。然后,使用gcc命令将这两个文件链接成MYSER可执行文件,并将其移动到../bin目录下。 总体Makefile 在总体Makefile中,我们可以看到以下内容: ```makefile Target : make -C src make -C obj .PHONY : clean clean : rm bin/* obj/*.o ``` 这里的Target指定了两个子目录:src和obj。使用make命令调用这两个子目录中的Makefile文件,以便编译和构建项目。.PHONY标记指定了clean目标,这个目标用于删除bin和obj目录下的所有文件。 Makefile的使用 使用Makefile可以大大提高项目的构建效率。Makefile可以自动检测源文件的变化,并重新编译和链接目标文件。这样可以节省开发者的时间和精力。 Linux makefile 在Linux系统中,Makefile是一个非常重要的文件。它可以帮助开发者快速构建和编译项目。Makefile文件可以使用各种命令和工具来实现自动构建和编译。 _make命令 _make命令是Makefile文件的核心命令。它可以读取Makefile文件,并执行其中的命令。_make命令可以自动检测源文件的变化,并重新编译和链接目标文件。 gcc命令 gcc命令是GNU编译器集合中的一个命令。它可以将C语言源文件编译成目标文件。gcc命令可以指定各种编译选项和参数,以便实现不同的编译结果。 lpthread库 lpthread库是Linux系统中的一个线程库。它提供了线程创建、同步和通信等功能。在Makefile中,我们可以使用-lpthread选项来链接lpthread库。 Makefile是一个非常重要的文件,在Linux系统中广泛应用于自动构建和编译项目。通过Makefile,我们可以快速构建和编译项目,并且可以自动检测源文件的变化。
2024-10-19 22:16:24 39KB Linux makefile
1
### Linux中Makefile的命令包定义及使用 在Linux环境下,Makefile是一种非常重要的构建工具,它通过自动化处理源代码编译、链接等任务来提高软件开发效率。本文将详细介绍如何在Makefile中定义和使用命令包(也称为宏或函数),并通过具体的例子帮助读者更好地理解和掌握这一技术。 #### Makefile简介 Makefile是一种脚本文件,通常用于描述如何从源代码构建可执行程序的过程。Makefile的核心概念包括目标(target)、依赖(dependency)以及命令(command)。目标通常是需要构建的文件,依赖是指目标构建所需的文件,而命令则是具体的操作指令。 #### 命令包定义 在Makefile中,经常会出现重复的命令序列。为了简化Makefile并增强其可读性和可维护性,可以定义命令包来封装这些重复的序列。命令包的定义语法如下: ```makefile define # 命令序列 endef ``` 其中``是你为这个命令包所起的名字。命令包内部可以包含任何有效的Makefile命令。 #### 示例分析 以下是一个实际的Makefile命令包定义示例: ```makefile define _find-android-products-files $(shell test -d device && find device -maxdepth 6 -name AndroidProducts.mk) \ $(shell test -d vendor && find vendor -maxdepth 6 -name AndroidProducts.mk) \ $(SRC_TARGET_DIR)/product/AndroidProducts.mk endef ``` 这段代码定义了一个名为`_find-android-products-files`的命令包,它的作用是从指定目录中查找名为`AndroidProducts.mk`的文件。这里使用了`shell`命令来执行Linux shell命令,并利用条件判断(`test`)和文件查找(`find`)来定位这些文件。 #### 命令包使用 定义了命令包之后,可以通过调用的方式来使用它们。调用命令包的语法为: ```makefile $(call , [arg1], [arg2], ...) ``` 其中``是命令包的名称,后面的参数可以根据命令包的需求进行传递。 例如,根据上面的例子,我们可以这样使用这个命令包: ```makefile define get-all-product-makefiles $(call _find-android-products-files) endef ``` 这里`get-all-product-makefiles`是一个新的命令包,它调用了`_find-android-products-files`来获取所有的产品配置文件。 #### 注意事项 1. **命名冲突**:定义命令包时要避免与Makefile已有的变量或者命令包重名。 2. **参数传递**:当命令包需要接受外部参数时,可以在定义时预留参数位置。 3. **命令嵌套**:命令包中可以嵌套其他命令包,但需要注意层次不要过深,以免导致调试困难。 4. **Shell命令使用**:在Makefile中使用shell命令时,应当注意安全性和兼容性问题。 #### 总结 通过定义和使用命令包,可以使Makefile变得更加简洁和高效。这不仅有助于减少代码重复,还能够提高代码的可读性和可维护性。希望本文提供的例子和解释能帮助你在实际项目中更好地应用这一技术。如果你在使用过程中遇到任何问题,欢迎继续探讨和交流。
1
一、Linux Makefile介绍   Linux Makefile是用于自动编译和链接的,一个工程有很多文件组成,每一个文件的改变都会导致工程的重新链接,但是不是所有的文件都需要重新编译,Linux Makefile中纪录有文件的信息,在make时会决定在链接的时候需要重新编译哪些文件。   Linux Makefile的宗旨是:让编译器知道要编译一个文件需要依赖其他的哪些文件。当那些依赖文件有了改变,编译器会自动的发现终的生成文件已经过时,而重新编译相应的模块。   Linux Makefile的基本结构不是很复杂,但当一个程序开发人员开始写Linux Makefile时,经常会怀
2024-10-19 21:45:49 87KB file
1