- 运维自动化发展历程及技术应用 - Ansible命令使用 - Ansible常用模块详解 - YAML语法简介 - Ansible playbook基础 - Playbook变量、tags、handlers使用 - Playbook模板templates - Playbook条件判断 when - Playbook字典 with_items - Ansible Roles
2025-05-08 10:28:01 70KB ansible
1
CSDN Matlab武动乾坤上传的资料均是完整代码运行出的仿真结果图,可见完整代码亲测可用,适合小白; 1、完整的代码内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-05-07 21:15:53 12KB matlab
1
人脸识别技术在教室人数统计领域的应用主要依托于Matlab平台的图形用户界面(GUI)开发环境,通过形态学分析来实现。形态学是一种基于形态和形状的数学分支,在图像处理中扮演着重要的角色,尤其在提取形状特征和分类图像领域中。在本课题中,通过Matlab编程与GUI设计,实现了一个人数统计系统,该系统具有界面友好、操作简单、实时性强等优点。 此系统的开发背景基于现实世界对于人流信息的强烈需求。对于各类公共场所以及教育机构,了解在特定时间段内的客流量具有重要意义。它不仅能够在商业信息采集和公共安全监控方面发挥作用,还可以辅助教学管理,提高教务管理效率。 在教学领域,学生到课情况的统计对于提高学生学习效率和保障学生安全都至关重要。传统的人数统计方法如花名册顺序点名和随机点名,虽然能够反映学生出勤情况,但耗时且容易被其他同学代答,效率较低。而采用固定座位和分组统计的方法,虽然可以节省教师的时间,但也有其局限性,如不便于在不同教室频繁更换。 基于Matlab GUI的形态学教室人数统计系统能够有效解决以上问题。该系统通过摄像头实时采集教室内的图像数据,然后利用Matlab提供的图像处理和分析工具包,对图像进行预处理、特征提取和分析,进而统计在教室内的学生人数。系统中的形态学操作通常包括腐蚀、膨胀、开运算和闭运算等,这些操作可以帮助系统更好地分离出个体,并且剔除无关的干扰,如背景噪音、非目标物体等。 此外,该系统还可以搭载相应的面板,使得用户界面更加直观,操作更为便捷。Matlab源码的公开也意味着,即便是不具备深厚编程经验的教育工作者或学生,也可以根据实际需求对系统进行调整和优化。 在Matlab源码的基础上,开发者还提供了丰富的学习资源和后续支持,包括但不限于Matlab图像处理、路径规划、神经网络、优化求解、语音和信号处理、车间调度等内容。这表明,该系统的开发并非孤立项目,而是一个集成了多个先进算法和技术的综合性应用,旨在为Matlab用户提供一个全面的技术支持平台。 开发者通过个人博客和社交媒体分享技术心得和源码,为Matlab社区的交流和发展做出了积极贡献。通过这些分享,更多有志于Matlab仿真和开发的用户能够获得灵感,提升自我技术水平,同时也为Matlab的学习者和研究者提供了一个相互学习、共同进步的平台。
2025-05-07 16:39:32 18KB
1
04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md 04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬虫的基本工作原理.md04_爬
2025-04-19 11:46:42 4KB 爬虫
1
CSDN Matlab武动乾坤上传的资料均是完整代码运行出的仿真结果图,可见完整代码亲测可用,适合小白; 1、完整的代码内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-04-16 15:51:38 12KB matlab
1
CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
2025-04-15 15:28:58 10KB matlab
1
在对管理站进行初始配置时,如果不使用动态主机配置协议 (DHCP),必须将至少一个网络适配器配置在与以下项相同的 IP 子网上,即存储阵列的默认管理端口(RAID 控制器 0 MGMT(端口 1): 192.168.129.101或 RAID 控制器 1 MGMT(端口 1): 192.168.129.102)。在进行初始配置后,可以使用 MDSM 配置管理端口,并且管理站的 IP 地址可改回其之前的设置。 使用 Dell PowerVault 存储阵列之前,请按所示顺序逐一完成这些初始配置任务。这些任务将通过 MD Storage Manager (MDSM) 软件执行。 对于带外管理,必须为每个 RAID 控制器模块设置网络配置,包括其互联网协议 (IP) 地址、子网掩码和网关。 注: 可使用 DHCP 服务器设置网络配置 启动 MDSM。 在 Microsoft Windows 操作系统中单击 开始 > 所有程序 > Dell > MD Storage Manager > Modular Disk Storage Manager Client 。
2025-04-15 10:12:24 550.79MB 网络协议 网络 网络
1
图像融合技术在医学领域具有重要的研究价值和应用前景。传统的图像融合方法通常依赖于手工设计的规则和算法,但随着人工智能技术的发展,尤其是深度学习技术的广泛应用,基于深度学习的医学图像融合方法逐渐成为研究热点。这类方法利用深度神经网络强大的特征提取和信息融合能力,能够有效地整合来自不同成像模态(如CT、MRI、PET等)的医学图像数据,生成具有更高信息密度和诊断价值的合成图像。其优势在于能够自动地从大量数据中学习到复杂的特征表示和融合策略,避免了传统手工设计方法的局限性。 在基于深度学习的医学图像融合的流程中,数据预处理是一个重要的步骤,它包括对原始图像进行去噪、归一化和标准化等操作,以确保图像数据的质量和网络的训练效果。特征提取通常采用卷积神经网络(CNN)来完成,网络如U-Net、VGG、ResNet等,通过卷积层、池化层和反卷积层等结构,提取不同模态图像的关键特征。融合模块是深度学习医学图像融合的核心,设计的特殊融合层或网络结构,如注意力机制或加权平均,可结合不同模态的特征图,赋予各模态相对的重要性,实现信息的有效整合。整个过程是端到端的训练,深度学习模型自动学习如何最优地融合各个模态的信息,无需手动设计规则。 在实际应用中,模型训练完成后,需要通过验证集和测试集来评估模型性能,评估指标包括PSNR、SSIM、DSC等。如果效果不理想,则需要对网络架构、超参数进行优化调整,或增加更多的训练数据。成功融合的图像可以应用于临床诊断、病理分析和治疗规划等多个环节,提高诊断的准确性和治疗的精准性。 在【图像融合】基于matlab深度学习医学图像融合【含Matlab源码 8038期】这篇文章中,作者不仅详细介绍了深度学习在医学图像融合中的应用原理和流程,还提供了一套完整的Matlab源码,使得读者能够通过运行main.m一键出图,直观感受深度学习在医学图像融合中的实际效果。文章中也展示了实际的运行结果图像,证明了方法的有效性。此外,作者还给出了Matlab版本信息和相关的参考文献,为感兴趣的读者提供了进一步深入学习和研究的方向。通过这篇文章,读者可以较为全面地了解基于Matlab和深度学习技术在医学图像融合领域的应用。
2025-04-12 12:25:43 12KB
1
CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像修复: 维纳滤波、最小二乘、模糊图像复原、中值、均值图像恢复、全变分TV+curvelet变换图像修复、自适应空间滤波图像修复
2025-04-05 13:29:30 14KB matlab
1
【图像去噪】基于matlab改进的小波阈值图像去噪(含PSNR)【含Matlab源码 2577期】
2025-02-08 14:49:20 10KB
1