针对混沌系统的参数辨识是一个多维参数的优化问题,提出了基于混沌策略状态转移算法的混沌系统参数辨识方法。该方法是在初始化时以混沌序列初始化种群,在搜索过程中引入混沌变异机制,利用遍历性对状态进行变异操作,避免了过早收敛,提高了全局搜索能力。利用该算法辨识Lorenz混沌系统参数,并与基本状态转移算法和粒子群算法进行比较。仿真结果表明,在有无噪声干扰的情况下,该算法比粒子群算法和基本状态转移算法具有更好的辨识精度,且比粒子群算法具有更好的收敛速度。证明了该算法的有效性和抗干扰性,对混沌理论的发展有重要的意义。
1