文章以能见度预测为例,完整演示LSTM在时序数据中的应用流程:先读取并清洗全国气象站逐小时观测数据,按时间步长构造样本集;再用PyTorch搭建含Dropout与ReLU的LSTM网络,通过训练、验证与测试三步评估模型;最后逆归一化输出未来3时刻能见度,展示趋势预测效果,并给出调参与过拟合处理建议。 在进行LSTM时序预测实战项目的过程中,文章首先从能见度预测的实际应用场景出发,详细介绍了时序数据的处理方法。文章指导读者如何从全国气象站获取逐小时的观测数据,并按照时间序列的要求构建样本集。这一步骤对于后续模型训练的准确性至关重要,因为高质量的数据集是预测模型构建的基石。 接着,文章深入讲解了使用PyTorch框架搭建LSTM网络的具体步骤。在网络设计中,作者特别提到了使用Dropout和ReLU激活函数,这两种技术能够有效防止模型过拟合,并且提高网络在训练过程中的稳定性和泛化能力。LSTM网络因其独特的门控机制,在处理时间序列数据方面具有天然的优势,能够捕捉到数据中的长时依赖关系。 文章进一步详细描述了模型训练、验证和测试的整个流程。在模型训练阶段,通过合理设置超参数,监控训练过程中的损失函数值和准确率变化,确保模型能够在训练集上学习到数据中的有效信息。在验证阶段,通过对比验证集的预测效果和实际值,评估模型的泛化能力,并根据验证结果不断调整模型参数。在测试阶段,文章展示了模型在未参与训练和验证的数据集上的表现,这有助于评估模型在现实场景中的实用性和可靠性。 在得到训练好的模型之后,文章讨论了模型输出结果的逆归一化处理,即将模型输出的标准化数据转换回原始的能见度数值,以便于实际应用和结果分析。通过将预测值和真实值进行对比,文章清晰地展示了LSTM模型对未来几个时间点的能见度趋势预测效果。 除此之外,文章还提供了调参与过拟合处理的建议。调参工作是模型优化的重要环节,作者建议使用网格搜索、随机搜索等方法,系统地搜索最优的超参数组合。而针对过拟合问题,除了使用Dropout技术外,还可以通过增加数据集大小、引入正则化项或者使用早停法(Early Stopping)来降低过拟合的风险。 文章最终给出了一个完整可运行的项目代码,这些代码不仅是对前述理论知识的实践应用,也是学习LSTM时序预测的宝贵资源。通过阅读和运行这些代码,读者可以更好地理解LSTM在时序预测中的应用,并且能够根据自己的数据集对代码进行适当的修改和扩展。 对于软件开发人员而言,通过这个项目可以掌握如何使用PyTorch框架构建LSTM网络,并应用于具体的时序预测问题。项目中的代码包提供了丰富的细节,使开发者可以更加深入地了解和掌握深度学习技术在时间序列分析中的应用。
2025-11-22 22:17:33 5.24MB 软件开发 源码
1
内容概要:文章介绍了如何利用LSTM(长短期记忆)神经网络构建光伏发电功率预测模型,综合考虑天气状况、季节变化、时间点和地理位置等多种影响因素,通过数据预处理、模型构建与训练,实现对未来96个时间点光功率的精准预测,并通过可视化图表展示预测结果。 适合人群:具备一定机器学习基础,熟悉Python编程,从事新能源预测、电力系统优化或人工智能应用研发的技术人员。 使用场景及目标:①应用于光伏发电站的功率预测系统,提升电网调度效率;②为研究多因素时间序列预测提供技术参考;③通过LSTM模型实现高精度短期光功率预测,支持能源管理决策。 阅读建议:建议结合代码实践,深入理解LSTM在时间序列预测中的应用机制,重点关注数据预处理与模型参数调优对预测精度的影响。
2025-11-13 20:15:38 511KB
1
在本研究中,提出了一个基于长短期记忆网络(LSTM)和Transformer模型融合的新型通信噪音时序预测模型。该模型的提出主要是为了解决通信系统中噪音预测的难题,通过将两种深度学习架构的优势进行整合,旨在提升噪音时序数据的预测准确度。 LSTM网络以其在处理时序数据方面的出色性能而广受欢迎。LSTM能够捕捉序列数据中的长期依赖关系,这对于噪音预测来说至关重要,因为通信信号的噪音往往具有复杂且连续的时间特性。LSTM通过其特有的门控机制(输入门、遗忘门和输出门)有效地解决了传统循环神经网络(RNN)在长序列学习上的梯度消失和梯度爆炸问题,进而能够更加精确地建模和预测噪音变化。 而Transformer模型则代表了另一种处理序列数据的先进技术。它首次由Vaswani等人提出,完全摒弃了传统的递归结构,转而采用自注意力(self-attention)机制来处理序列数据。这种机制使得模型可以并行处理序列中的任意两个位置,极大提升了计算效率,并且增强了对序列中全局依赖关系的捕捉能力。Transformer的这种处理方式,为噪音时序数据的特征提取提供了新的可能性,尤其是对于那些需要理解全局上下文信息的复杂噪声场景。 研究将LSTM的时序依赖捕捉能力和Transformer的全局特征提取能力进行了有效的融合。在这种融合架构下,模型不仅能够保持对序列长期依赖的学习,还能够并行地处理和提取序列中的全局特征,从而提高了噪音预测模型的鲁棒性和准确性。在进行多模型性能评估时,该融合模型展现出优异的性能,明显优于单独使用LSTM或Transformer模型的预测结果。 此外,研究还涉及了多模型性能评估,对融合模型和其他主流的深度学习模型进行了比较分析。通过一系列实验验证了融合模型在各种评估指标上的优越性,如均方误差(MSE)、平均绝对误差(MAE)和决定系数(R^2)等。这些评估结果进一步证实了模型融合策略的有效性,为通信系统中的噪音预测问题提供了一个可靠的技术方案。 在通信信号处理领域,噪音是一个长期存在的挑战,它会严重影响信号的传输质量和通信的可靠性。准确预测通信信号中的噪音变化对于提前采取措施减轻干扰具有重要意义。本研究提出的基于LSTM与Transformer融合架构的通信噪音时序预测模型,在这一领域展示了巨大的潜力和应用价值。 本研究工作不仅在技术上实现了LSTM和Transformer的深度融合,而且在实际应用中展示了通过融合模型优化提升通信系统性能的可能。这项研究工作为通信噪音预测问题提供了一个新颖的解决方案,并且对于其他需要处理复杂时序数据预测任务的领域也具有重要的参考价值。
2025-11-04 18:56:10 64KB
1
程序名称:基于EMD(经验模态分解)-KPCA(核主成分分析)-LSTM的光伏功率预测模型 实现平台:matlab 代码简介:提高光伏发电功率预测精度,对于保证电力系统的安全调度和稳定运行具有重要意义。提出一种经验模态分解 (EMD)、核主成分分析(KPCA)和长短期记忆神经网络(LSTM)相结合的光伏功率预测模型。充分考虑制约光伏输出功率的4种环 境因素,首先利用EMD将环境因素序列进行分解,得到数据信号在不同时间尺度上的变化情况,降低环境因素序列的非平稳 性;其次利用KPCA提取特征序列的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入的维度;最终利用LSTM网络 对多变量特征序列进行动态时间建模,实现对光伏发电功率的预测。实验结果表明,该预测模型较传统光伏功率预测方法有更高的精确度。附带参考文献。本代码在原文献上进行了改进,采用KPCA代替PCA,进一步提升了预测精度。代码具有一定创新性,且模块化编写,可自由根据需要更改完善模型,如将EMD替换成VMD CEEMD CEEMDAN EEMD等分解算法,对LSTM进一步改善,替换为GRU,BILSTM等。代码注释详细,无
2025-11-04 15:52:19 1.07MB lstm matlab
1
内容概要:介绍了一种使用MATLAB实现EMD-KPCA-LSTM、EMD-LSTM与传统LSTM模型进行多变量时间序列预测的方法。从光伏发电功率的实际数据出发,在生成带噪声信号的基础上,逐步探讨了利用经验模态分解处理数据非稳性、主成分分析实现降维处理和构建LSTM预测模型的技术路径,提供了全面细致的操作指导。 适用人群:针对有一定编程能力和数学理论背景的研究人员和技术开发者,尤其适用于那些想要探索先进预测建模并在实际应用案例中有兴趣的人士。 使用场景及目标:主要目的是为了更好地理解和优化针对波动较大或不稳定时间序列的预测能力。通过比较各模型预测表现,找到最适合特定应用场景的最佳配置方案,从而支持相关领域的决策制定过程。 其他说明:文中附带了完整的工作实例、步骤讲解与源代码示例,有助于用户复现实验流程并进行相应的调整改进,进而提高研究效率或促进新项目启动。
2025-11-01 17:12:01 30KB MATLAB LSTM EMD KPCA
1
内容概要:本文档提供了基于经验模态分解(EMD)、核主成分分析(KPCA)和长短期记忆网络(LSTM)的多维时间序列预测MATLAB代码实现。具体应用案例为北半球光伏功率预测,涉及的数据集包含太阳辐射度、气温、气压和大气湿度四个输入特征,以及光伏功率作为输出预测。文档详细介绍了从数据加载与预处理到EMD和KPCA处理,再到LSTM模型训练与预测的具体步骤,并进行了EMD-LSTM、EMD-KPCA-LSTM和纯LSTM模型的对比分析。此外,还强调了代码的注释清晰度和调试便利性,确保用户能够顺利运行和理解整个流程。 适用人群:适用于具有一定MATLAB编程基础和技术背景的研究人员、工程师或学生,特别是那些对时间序列预测、机器学习和光伏功率预测感兴趣的群体。 使用场景及目标:① 使用EMD、KPCA和LSTM组合模型进行多维时间序列预测;② 对比不同模型的效果,选择最优模型;③ 掌握MATLAB环境下复杂模型的构建和调优方法。 其他说明:代码已验证可行,支持本地EXCEL数据读取,附带详细的“说明”文件帮助用户快速上手。建议用户在实践中结合实际需求调整参数和模型配置,以获得最佳预测效果。
2025-11-01 16:52:20 749KB
1
DeepBGC:生物合成基因簇的检测和分类 DeepBGC使用深度学习来检测细菌和真菌基因组中的BGC。 DeepBGC使用双向长期短期记忆递归神经网络和Pfam蛋白域的word2vec样载体嵌入。 使用随机森林分类器预测产品类别和检测到的BGC的活性。 :pushpin: 消息 :pushpin: DeepBGC 0.1.23:预测BGCs现在可以在antiSMASH使用JSON输出文件被上传用于可视化 根据以下说明,照常安装和运行DeepBGC 上传antismash.json从DeepBGC输出文件夹使用“上传额外的注释” 页 预测的BGC区域及其预测分数将与antiSMASH BGC一起显示 刊物 用于生物合成基因簇预测的深度学习基因组挖掘策略Geoffrey D Hannigan,David Prihoda等人,《核酸研究》,gkz654, //doi.org/10.1093/nar/gkz654 使用
2025-10-29 18:34:24 557KB python deep-learning bidirectional-lstm
1
内容概要:本文档提供了基于经验模态分解(EMD)、核主成分分析(KPCA)与长短期记忆网络(LSTM)的组合模型,用于北半球光伏功率的多维时间序列预测。文档详细介绍了从数据加载与预处理到模型训练与预测的具体步骤,并对比了LSTM、EMD-LSTM和EMD-KPCA-LSTM三种模型的效果。代码支持读取本地EXCEL数据,适用于多种时间序列预测任务,如电力负荷、风速、光伏功率等。文中还强调了代码的注释清晰,便于理解和调试。 适用人群:具备MATLAB编程基础的研究人员和技术人员,特别是从事时间序列预测、能源数据分析领域的专业人士。 使用场景及目标:① 使用EMD、KPCA和LSTM组合模型进行多维时间序列预测;② 对比不同模型的预测效果,选择最优模型;③ 处理和分析光伏功率等时间序列数据。 其他说明:代码已验证,确保原始程序运行正常。建议在运行前仔细阅读程序包中的‘说明’文件,了解数据准备、模型参数设置及运行环境要求。
2025-10-28 11:11:56 713KB
1
内容概要:本文详细介绍了如何利用Matlab实现Transformer-LSTM结合的多变量回归预测模型。首先,文章解释了Transformer和LSTM各自的特点及其结合的优势,特别是在处理长序列依赖和时间序列数据方面。接着,提供了具体的Matlab代码示例,展示了从数据预处理(如读取Excel文件并转换为数值矩阵)、模型搭建(包括定义Transformer和LSTM层)、训练(采用Adam优化器和动态学习率策略)到评估(使用R²、MAE、RMSE、MAPE等指标)的全过程。此外,还讨论了模型的灵活性,可以通过修改输出层轻松切换为分类或其他类型的预测任务。文中强调了数据质量和特征选择的重要性,并给出了一些优化建议,如引入特征交叉层或使用霜冰优化算法。 适合人群:对机器学习尤其是深度学习感兴趣的研究人员和技术爱好者,特别是那些希望使用Matlab进行数据分析和建模的人群。 使用场景及目标:适用于需要处理多变量时间序列数据的预测任务,如经济趋势预测、工业传感器数据处理、股票市场波动分析等。目标是帮助用户快速上手并有效应用这一强大的预测工具。 其他说明:文章不仅提供了完整的代码实现,还包括详细的注释和图表辅助理解,确保即使是初学者也能顺利运行程序。同时,针对可能出现的问题给出了实用的解决方案,如避免数据归一化的常见错误,以及如何应对特定情况下的模型性能不佳等问题。
2025-10-15 15:45:33 1.6MB
1
LSTM(长短期记忆网络)作为一种特殊的循环神经网络(RNN)结构,被广泛应用于处理和预测时间序列数据。在电池管理系统(BMS)中,对电池的荷电状态(State of Charge, SOC)的精确估计是保障电池安全、延长电池寿命和提高电池效率的关键技术之一。本文将详细介绍如何使用LSTM技术进行电池SOC估计,并提供一个包含两个数据集及其介绍、预处理代码、模型代码和估计结果的完整代码包,旨在为初学者提供一个全面的学习资源。 数据集是进行电池SOC估计的基础。在本代码包中,包含了两个经过精心挑选的数据集。这些数据集包括了不同条件下电池的充放电循环数据,如电压、电流、温度、时间等参数。通过分析这些数据集,可以发现电池性能随着循环次数和操作条件的变化规律,为模型的训练提供丰富的信息。 数据预处理是模型训练之前的必要步骤。在电池SOC估计中,由于原始数据通常包含噪声和异常值,且不同数据之间可能存在量纲和数量级的差异,因此需要对数据进行清洗和归一化处理。预处理代码包中的Python脚本将指导如何去除不规则数据、进行插值、归一化和数据分割等操作,以确保模型能够在一个干净、格式统一的数据集上进行训练。 模型代码是整个SOC估计过程的核心部分。本代码包提供了基于LSTM网络的SOC估计模型代码,详细展示了如何搭建网络结构、设置超参数、进行训练和验证等。其中,LSTM的多层堆叠结构可以捕捉到电池长期依赖性,这对于SOC估计至关重要。代码中还包括了模型的保存和加载机制,便于进行模型的持久化处理和后续的模型评估。 估计结果是验证模型性能的重要指标。通过在测试集上运行模型,可以得到电池SOC的估计值,并与实际值进行对比。本代码包中包含的评估脚本将帮助用户计算均方误差(MSE)、均方根误差(RMSE)等多种评价指标,从而对模型的准确性和泛化能力进行全面评估。 此外,技术博客文章在电池估计中的应用解析一引言.doc、做电池估计最基本的.html等文档,提供了对电池SOC估计方法论的深入解读和实战指南。这些文档详细介绍了电池SOC估计的意义、应用场景以及所采用技术的原理和优势,为初学者提供了从理论到实践的完整学习路径。 本代码包为电池SOC估计提供了一个从数据集获取、数据预处理、模型训练到结果评估的完整流程。它不仅适用于初学者入门学习,也为专业人士提供了一个实用的工具集。通过深入研究和实践本代码包,可以有效提升电池SOC估计的准确度,进而推动电池技术的发展和应用。
2025-09-29 11:32:46 179KB 数据仓库
1