光储充交直流三相并网 离网系统 基于Matlab三相光伏储能充电桩(光储充一体化) 关键词:光伏大功率 储能 充电桩 LLC 电池 并网PQ控制 SPWM 恒压 恒流充电 提供两个仿真可对比看效果,如图一,二。 点击“加好友”可先看波形效果细节 1、光伏,功率600kW,采用电导增量法 2、储能系统 采用双向DCDC,buck-boost变器,采用电压外环,电流内环,稳定母线电压800V。 3、并网逆变器采用PQ控制,交流系统 含220V大电网,LC滤波器,采用SPWM调制 4、三组充电桩采用全桥LLC结构,输入800V左右,恒压输出350~480V,恒流输出100A~300A效果好(恒流设置越小达到稳定的时间越长,理论可以设0A空载运行),额定功率120kW,开关频率60k。 充电桩可设置不同工况运行。 具备恒流切恒压功能。 注:仿真运行时间很长,超过半小时,这是为了能满足LLC离散运行要求,把powergui设置的很小,导致运行时间很长,加上LLC仿真特性造成的。 可提供仿真使用、参考资料
2025-09-11 23:22:30 862KB xbox
1
全桥LLC仿真模型在MATLAB Simulink中的闭环设计与实现:一份可供初学者参考的设计报告,全桥LLC仿真模型在MATLAB Simulink中的闭环设计与实现:一份可供初学者参考的设计报告,全桥LLC仿真模型(MTALAB Similink),闭环,设计报告,可供初学者参考。 打包发送 ,全桥LLC仿真模型; MTALAB Similink; 闭环设计; 设计报告; 初学者参考; 打包发送,全桥LLC仿真模型设计报告:闭环系统构建,初学者的参考指南 在现代电力电子领域,全桥LLC转换器由于其高效率、宽输入范围和高功率密度而被广泛应用。MATLAB Simulink作为一种强大的仿真工具,能够帮助工程师在设计转换器时更直观地理解电路行为,优化设计参数。本文档旨在为初学者提供一份关于如何在MATLAB Simulink环境下构建全桥LLC转换器闭环仿真模型的设计报告。 设计全桥LLC转换器的闭环仿真模型首先需要建立准确的数学模型。这包括对全桥电路拓扑的理解,以及对LLC谐振网络的理论分析。在MATLAB中,可以利用其强大的矩阵运算能力和内置函数来构建这些模型。模型中需要考虑的主要因素包括开关元件的特性、谐振电感和电容的参数、以及负载的变化等。 仿真模型的建立需要遵循一定的步骤。需要在Simulink中创建全桥LLC转换器的基础电路模型,这包括开关器件、谐振电容、谐振电感以及变压器等组件。接着,需要对这些组件进行参数化,以便于后续调整和优化。在搭建好基础电路后,需要设计闭环控制系统,这通常包括一个反馈回路来确保输出电压或电流的稳定性。常见的反馈控制策略有比例积分微分(PID)控制等。通过编写相应的MATLAB脚本,可以对仿真模型进行运行,观察系统在不同条件下的动态响应,并进行必要的调整。 在设计报告中,作者详细介绍了仿真模型的每一个部分,包括每个模块的功能和设计思路,以及如何进行参数设置和优化。此外,报告还提供了丰富的图表和数据,帮助读者更直观地理解模型的运行情况。对于初学者而言,这份报告不仅是一份设计指南,更是一份学习资源,使他们能够通过实际操作来加深对全桥LLC转换器的理解。 报告还强调了在仿真过程中需要注意的一些关键点,比如开关频率的选择、参数的匹配问题、以及死区时间的设置等。这些因素都会影响转换器的性能和效率。通过分析和优化这些参数,可以使设计更加接近实际应用场景。 这份设计报告为初学者提供了一个全面的学习平台,通过实例和步骤说明了如何在MATLAB Simulink中设计和实现全桥LLC转换器的闭环仿真模型。通过参考这份报告,初学者不仅能够理解全桥LLC转换器的工作原理和设计方法,还能够掌握在Simulink中进行电力电子设备仿真的基本技能。这对于他们未来在电力电子领域的研究和开发工作将大有裨益。
2025-09-09 16:44:54 1.52MB ajax
1
一款200W高效能开关电源的设计方案,采用了PFC(功率因数校正)、LLC谐振变换器和同步整流技术。该电源支持12V和24V双电压输出,具有高达94%的效率和超过0.98的功率因数。文中不仅提供了详细的电路参数、PCB布局、变压器电感参数和BOM清单,还展示了PFC、LLC和同步整流的关键控制代码及其工作原理。此外,该设计方案在紧凑的空间内实现了高性能,适用于多种应用场景。 适合人群:电力电子工程师、硬件设计师、从事电源设计的技术人员。 使用场景及目标:①用于工业设备、消费电子产品和其他需要高效电源供应的场合;②帮助工程师理解和实现高效率、高功率因数的开关电源设计。 其他说明:该方案不仅提供了理论和技术细节,还包括实用的工程数据,如PCB布局和元件清单,便于实际生产和应用。
2025-09-06 22:24:03 459KB
1
内容概要:本文详细介绍了频率控制(PFM)与占空比控制(PWM)混合调制的LLC全桥谐振变换器闭环仿真模型。LLC全桥谐振变换器因其能够实现软开关、提升效率和降低损耗,在电源领域非常重要。文中通过MATLAB/Simulink搭建了主电路和控制部分,展示了如何根据输出电压和参考电压的误差选择不同的控制模式(PFM、PWM或混合模式),并提供了简化的MATLAB伪代码示例。通过调整谐振元件参数和控制模式切换阈值,可以优化变换器性能。 适合人群:从事电源系统研究的技术人员、高校师生以及对电力电子仿真感兴趣的爱好者。 使用场景及目标:适用于需要深入了解和研究LLC全桥谐振变换器及其控制方式的研究人员和技术开发者,旨在帮助他们掌握PFM与PWM混合调制的具体实现方法,从而提高电源系统的效率。 其他说明:文中提供的MATLAB伪代码为简化版本,实际应用时需根据具体情况进行调整和完善。
2025-09-04 08:47:40 464KB 电力电子 控制系统仿真
1
内容概要:本文探讨了15kW充电桩的PSIM仿真设计,主要涉及三相维也纳PFC和三电平LLC的组合系统。系统输入为三相380Vac,输出为800Vdc。文中详细分析了这两种技术的工作原理及其在PSIM仿真实验中的表现,展示了它们在提高功率因数、降低谐波失真以及提升能量转换效率方面的优势。仿真结果显示,三相维也纳PFC显著提高了功率因数,减少了谐波失真;而三电平LLC则在800Vdc的输出电压下保持了高效的能量转换和平稳的电压电流波形。此外,文章还提出了未来优化控制策略的方向。 适合人群:从事电力电子、电动汽车充电设备研发的技术人员,尤其是对PSIM仿真工具和高效直流电源解决方案感兴趣的工程师。 使用场景及目标:适用于需要深入了解充电桩内部工作原理和技术细节的研究人员和工程师。目标是帮助他们掌握三相维也纳PFC和三电平LLC的具体应用方法,以便应用于实际项目中。 其他说明:本文不仅提供了详细的理论分析,还包括了部分仿真代码,有助于读者更好地理解和复现实验结果。
2025-08-26 22:08:30 764KB 电力电子
1
半桥与全桥LLC仿真中的谐振变换器四种控制方式探索:频率控制PFM、PWM、移相控制PSM及混合控制PFM+PSM在Plecs、Matlab Simulink环境下的应用。,半桥与全桥LLC仿真中的谐振变换器四种基本控制方式:频率控制PFM、PWM控制、移相控制PSM与混合控制PFM+PSM在plecs、matlab及simulink环境下的应用。,半桥 全桥LLC仿真,谐振变器的四种基本控制方式。 主要有 频率控制PFM PWM控制 移相控制PSM 混合控制PFM+PSM 运行环境有plecs matlab simulink ,半桥; 全桥LLC仿真; 谐振变换器; 控制方式:频率控制PFM; PWM控制; 移相控制PSM; 混合控制PFM+PSM; 运行环境:plecs; matlab; simulink。,半桥全桥LLC仿真研究:四种谐振变换器控制方式探索运行环境:Plecs与Matlab Simulink的比较与运用
2025-07-16 16:46:13 3.35MB istio
1
在当今电子设计领域,高效、稳定、小型化的电源系统成为技术发展的必然趋势,半桥LLC谐振变换器以其优越的性能在众多开关电源技术中脱颖而出。半桥LLC谐振变换器是一种典型的高频变压器设计,它结合了半桥结构与LLC谐振网络,被广泛应用于通信电源、电子设备、航天及电动汽车充电站等对性能要求极高的领域。 我们来了解一下半桥LLC型谐振变换器的拓扑结构。该变换器由四个主要部分构成:输入电源、谐振电路、变压器以及输出电路。在这四个部分中,谐振电路是整个变换器的核心。它不仅决定了整个系统的能量传输效率,还影响到输出电压的稳定性。通过精心设计的谐振电路,可以有效减少高频运行时的损耗,并降低对变压器设计的要求。 接下来,我们探讨一下高频变压器的设计过程,这是半桥LLC型谐振变换器设计中的重中之重。在设计过程中,我们需要按照以下步骤进行: 1. 确定变压器的基本参数,包括变压器的类型、尺寸、所用材料、绕组数等。这些参数将决定变压器的总体性能和适用范围。 2. 精心选择合适的磁芯材料。磁芯材料的选择对于高频变压器性能有着决定性的影响,它关系到变压器在高频运行时的损耗大小、热稳定性及整体效率。 3. 设计绕组结构。绕组结构的设计关乎到变压器的性能表现,良好的绕组结构设计能够进一步优化磁通分布,减少漏感和分布电容,从而提高变压器的工作效率和可靠性。 4. 优化变压器设计。设计师需要通过计算机模拟和实际测试来不断调整和优化设计方案,力求在保证性能的同时减小尺寸,提高效率,确保设计出的变压器在实际工作中既高效又可靠。 AP法(即铁氧体磁芯的功率损耗法)在高频变压器设计中具有广泛的应用。AP法是一种有效的设计工具,能够帮助设计师快速确定变压器的基本参数,如尺寸、材料和绕组数等,同时它还能指导设计师进行变压器的优化设计,以提升变压器的效率和可靠性。 应用AP法和优化设计,赵慧超在其论文《半桥LLC谐振电路知识详解-半桥LLC型谐振变换器的高频变压器设计》中展示了具体的高频变压器设计结果:选定了EE-100型号的变压器,绕组数为59和80,采用了18号导线。设计出的变压器效率高达95%以上,损耗仅为16.187瓦。 半桥LLC型谐振变换器的高频变压器设计不仅要求工程师具备扎实的理论基础和丰富的实践经验,还需运用现代计算机辅助设计工具。通过这样精密的设计流程,可以解决开关电源在高频运行时遇到的诸如高频损耗、输出电压不稳定、发热量大等常见问题。这样的设计方法不仅提高了电源系统的整体性能,而且对于推动电源技术的进一步革新有着积极的意义。在电子设计领域,这种对电源效率和稳定性的不懈追求,将驱动更多创新技术的涌现,为各行各业提供更为高效、可靠、便捷的电源解决方案。
2025-07-11 15:45:36 630KB 电子设计
1
半桥闭环LLC谐振变换器仿真研究:软启动策略、PI控制与柔化给定信号下的波形对比及性能分析,半桥闭环LLC谐振变器仿真,含采用软启动策略,pi控制,柔化给定信号,三种方式波形对比波形图 50一类。 ,核心关键词:半桥闭环LLC谐振变换器仿真; 软启动策略; PI控制; 柔化给定信号; 波形对比; 波形图; 50一类。,"半桥LLC谐振变换器仿真:软启动策略与Pi控制波形对比研究" 在电力电子技术领域,半桥闭环LLC谐振变换器以其高效率、高功率密度、良好动态性能等优势,在电源转换中扮演着重要角色。本文对半桥闭环LLC谐振变换器进行了仿真研究,特别关注了软启动策略、PI控制以及柔化给定信号对波形的影响及其性能分析。 软启动策略作为解决开关电源中启动过程电流冲击的有效手段,其作用在于避免大电流对开关器件的损害,延长器件的使用寿命。软启动策略的实施能够在变换器启动瞬间,通过逐渐增加输入电压来控制输出电压的上升速率,从而减小电流冲击。在半桥闭环LLC谐振变换器中,软启动策略的引入可以有效提升设备的启动性能,减小启动过程中的电流应力,为后续稳定的电力转换打下坚实基础。 PI控制(比例-积分控制)在变换器的控制策略中广泛被应用。PI控制器通过对误差信号进行比例和积分运算来产生控制量,使得系统的输出能够快速、准确地跟踪参考信号,保持稳定。在半桥闭环LLC谐振变换器中,PI控制被用来调节谐振频率与开关频率的匹配程度,从而实现对输出电压和电流的精确控制。PI控制的优化直接影响到变换器的动态响应和稳定性。 再者,柔化给定信号是一种控制策略,其目的在于减少输出信号的突变,减少电磁干扰和机械应力,提高设备工作的稳定性和可靠性。在半桥闭环LLC谐振变换器中,柔化给定信号的策略可以降低由开关动作引起的电压和电流脉动,降低电磁干扰,提高系统的整体性能。 通过对比软启动策略、PI控制和柔化给定信号三种方式下的波形,可以直观地看出各自对变换器性能的具体影响。波形对比不仅能够反映不同控制策略对输出电压和电流的调节效果,还可以揭示其对变换器动态响应、稳定性等方面的影响。波形图是分析和评估变换器性能的重要工具,通过对波形图的分析,可以深入理解不同控制策略的优劣。 在电力电子技术迅速发展的今天,对于半桥闭环LLC谐振变换器的深入探索和研究具有重要的现实意义。仿真技术的应用使得变换器的设计和优化工作在没有实际制作硬件的情况下即可进行,节约了时间和成本,加速了产品的开发进程。通过仿真,可以提前发现设计中的问题,为实际的产品开发提供参考和指导。 半桥闭环LLC谐振变换器的仿真研究涉及多个方面的内容,包括软启动策略的实现、PI控制的优化以及柔化给定信号的应用。通过对这些控制策略的深入分析和波形对比,可以更好地理解它们对变换器性能的影响,为变换器的优化设计和性能提升提供科学依据。
2025-07-10 10:48:36 369KB
1
内容概要:本文深入探讨了半桥闭环LLC谐振变换器仿真中的三大关键技术:软启动策略、PI控制和柔化给定信号。首先介绍了软启动策略的作用及其代码实现,旨在通过逐步增加输入信号来避免启动时的电流冲击。其次详细解释了PI控制的工作原理,展示了如何通过比例和积分项调整控制信号,从而稳定输出电压。最后讨论了柔化给定信号的方法,通过低通滤波使输入信号更加平滑,减少了突变的影响。文中还提供了具体的Matlab和Python代码示例,并通过波形对比直观展示了不同方法的效果。 适合人群:从事电力电子设计、电源管理系统的工程师和技术爱好者。 使用场景及目标:适用于需要理解和优化半桥闭环LLC谐振变换器性能的设计人员,帮助他们掌握软启动、PI控制和柔化给定信号的应用技巧,提高系统的稳定性和可靠性。 其他说明:文中提到的实际案例和仿真数据有助于读者更好地理解理论知识并应用于实际项目中。同时提醒读者在实际应用中需要注意参数的选择和调整,以确保最佳效果。
2025-07-10 10:45:47 599KB
1
半桥LLC谐振转换器是一种广泛应用于电力电子领域的变换器,它具备多种优点,比如在高效率和低电磁干扰方面的良好性能。LLC谐振转换器的核心优势在于它的零电压开关(ZVS)特性,这大大降低了开关损耗,提升了整体转换效率。半桥LLC转换器因其独特的电路结构,可以有效地实现电压和电流的转换,其在电力电子设备中的应用十分广泛,从手机充电器到工业电源都有其身影。 MATLAB Simulink是一个强大的仿真工具,它被广泛应用于控制理论和数字信号处理等领域。通过MATLAB Simulink建立模型可以实现复杂的系统仿真,对于电路的设计和优化至关重要。在半桥LLC转换器的设计中,使用MATLAB Simulink可以进行各种模拟,包括暂态和稳态仿真,以及对ZVS特性和软启动等重要特性的研究。这些仿真可以帮助设计者更好地理解电路的行为,优化电路设计,从而减少原型制作的次数和成本,提高开发效率。 在进行半桥LLC转换器的仿真时,需要考虑的因素包括电路的谐振频率、品质因数、电感和电容的值等。这些参数都会对电路的工作状态产生影响,如输出电压、电流以及转换效率。因此,在仿真模型中对这些参数进行精细的调整,可以更准确地预测电路在不同工作条件下的表现。 在电力系统中,半桥拓扑结构作为一种高频转换器结构被广泛应用,它能够提高功率密度,降低系统成本。半桥转换器通常由两个开关器件组成,这些开关器件交替导通以驱动变压器或电感,从而实现功率的传递和调节。在设计半桥转换器时,一个关键点是控制这两个开关器件的导通时序,以确保转换器可以正确地进行能量转换。 此外,软启动技术在电子设备中被用来减少启动时的电流冲击,从而保护电路组件不受损害。在半桥LLC转换器中实现软启动,可以有效防止启动时的电流和电压尖峰,提升电路的稳定性和寿命。 在现代电力系统设计中,随着科技的不断进步,对于转换器的性能要求也越来越高。半桥拓扑结构的高频谐振转换器因其在小型化、高效率方面的优势,符合现代电力电子技术的发展趋势。因此,通过基于MATLAB Simulink建立的半桥LLC仿真模型,工程师可以对这类转换器进行深入的分析和优化,以满足日益增长的性能需求。 MATLAB Simulink对于电力电子领域的研究和开发人员来说,是一个不可或缺的工具。它不仅能够帮助设计者高效地建立复杂电路的仿真模型,还能够在模型的基础上进行深入的性能分析和优化,对于推动电力电子技术的发展具有重要意义。
2025-07-10 10:45:29 98KB
1