图像的均方误差的matlab代码 机器学习第一次作业 机器学习平台python和matlab的熟悉 1 问题描述 1 用python或者matlab编写一个KNN分类器 训练集为semeion_train.csv 测试集为semeion_test.csv 计算在测试集上的错误率(k = 1 3 5 7) 2 选做 在训练集上划分一个交叉验证集(可以是训练集数据的20%左右),利用交叉验证选择k值 画一个以k值为x轴,交叉验证集错误率为y的曲线 3 本次实验的简要介绍 实验内容 本次实验使用kNN算法实现手写数字的识别。数据有256个特征值,代表了一个16*16的位图的像素值,0为无像素,1为存在像素。利用python PIL做出其中各个数字的典型图像如下所示: kNN算法简介 kNN算法是一种监督学习算法。假设给定一个训练数据集,其中的实例类别已经确定。分类是对于新的类别,根据其最相近的k个邻居的类别,通过多数表决的方式进行预测。利用训练集对特征空间进行分类划分,并作为其分类的模型。 2. 解决方法 1 解决思路 计算待分类点与已知类别的点之间的距离 按照距离递增次序排序 选取与待分类
2023-01-10 10:26:06 3.84MB 系统开源
1
KNN算法详解,了解什么是KNN,以及KNN算法在ML中的应用。
2021-12-29 16:42:21 400KB KNN,ML
1