本文详细介绍了基于K210平台的人脸68关键点检测技术及其在疲劳检测中的应用。通过分析人脸关键点,特别是眼睛和嘴巴的状态,实现了对闭眼、打瞌睡等疲劳状态的检测。文章首先介绍了人脸68关键点检测的基本原理和步骤,包括人脸检测、关键点提取和分类。随后,重点阐述了如何通过计算眼睛关键点的纵向位置差值来判断眼睛的闭合程度,并设置了阈值进行实时监测。此外,还探讨了通过上下眼皮重合程度判断闭眼状态的方法。对于嘴巴状态的检测,文章详细说明了如何提取嘴唇上下轮廓的关键点,计算距离并设定阈值判断嘴巴是否闭合。最后,结合K210平台的代码示例,展示了如何将这些技术应用于实际的疲劳检测系统中,为相关领域的开发提供了实用的参考。 本文详细介绍了基于K210平台的人脸68关键点检测技术及其在疲劳检测中的应用。在人脸68关键点检测部分,首先介绍了技术的基本原理和实施步骤。人脸检测是通过捕捉人脸图像并识别出人脸的位置,然后进行关键点提取,这一过程主要是通过特定算法来定位人脸上的68个关键点,包括眼周、鼻翼、唇周等位置的关键点。这些关键点为后续的分类和分析提供了基础数据。 在对闭眼、打瞌睡等疲劳状态进行检测时,主要分析了眼睛和嘴巴的状态。文章详细说明了通过分析眼睛关键点的纵向位置差值来判断眼睛闭合程度的方法,并设置了阈值进行实时监测。当检测到眼睛关键点纵向位置差值达到或超过设定阈值时,系统会判断为疲劳状态。此外,文章还探讨了通过计算上下眼皮重合程度来判断闭眼状态的另一种方法。通过这种方式,可以更准确地监测到驾驶员或操作人员是否出现疲劳现象,从而采取相应的预防措施。 在嘴巴状态检测方面,文章阐述了提取嘴唇上下轮廓关键点的方法,通过计算这些关键点间的距离,并设定阈值来判断嘴巴是否闭合。闭合程度的判断有助于识别出打哈欠等疲劳迹象。结合K210平台提供的代码示例,本文展示了如何将这些技术应用于实际疲劳检测系统中。这对于开发者来说,不仅提供了技术实现的参考,还具有较高的实践价值。 K210是一颗专为机器视觉和人工智能设计的芯片,它集成了KPU神经网络处理器和多种外设接口。利用K210平台实现的疲劳检测系统具备较高的实时性和准确性。系统的开发涉及到机器视觉算法与嵌入式编程技术的结合,这对于开发人员来说是一种挑战,同时也是一种提升个人能力的机会。 在实际应用中,该系统能够实时监测驾驶员或者操作人员的面部状态,当检测到疲劳迹象时,系统可以发出警告,提醒相关人员注意休息,从而有效预防因疲劳驾驶或操作引发的安全事故。对于在公共交通、工业生产及智能监控等领域,这种疲劳检测技术的应用具有重要的社会意义和经济价值。 在软件开发领域,此类技术的实现和优化是持续进行的过程。随着技术的发展,未来可以期待更加高效和智能的疲劳检测算法出现。例如,通过深度学习算法对人脸关键点进行更精确的提取和分析,提高疲劳判断的准确率;或者利用更多的生理特征来进行综合判断,如头部姿势、眨眼频率等,从而使检测系统更加全面和准确。 此外,随着AI技术在各个行业的普及,对于开发人员来说,掌握如何将算法应用到具体硬件平台上是一项必备的技能。通过将这些技术应用于实际项目中,开发人员不仅能够验证算法的有效性,还能够积累宝贵的经验,为未来的职业发展打下坚实的基础。最终,这一技术的普及和应用将极大地提高人们工作和生活的安全性。
2025-12-25 19:50:42 542B 软件开发 源码
1
首先,根据AGV小车需要实现的功能,设计了系统的总体方案。在硬件设计方面,对AGV小车的控制设计为两个控制核心,一个为主控核心,另一个为辅助控制核心。添加电机驱动模块、电源检测模块、无线通信模块、陀螺仪模块、四路循线模块、视觉识别模块等。 然后,对系统的硬件模块进行分布软件设计。主要包括模块间通信方式设计、车体运动控制设计、陀螺仪信息采集设计、电源检测程序设计、巡线程序设计、WIFI通信设计、物联网监测设计等。采用了红外循迹技术、图像采集及颜色识别技术、串口及IIC通信技术、WIFI通信技术、物联网连接技术等。 最后,通过对AGV小车控制系统进行软硬件联调、模拟场景测试,实现了AGV小车按照既定路线行走,并根据摄像头颜色提取实现物料识别及位置定位功能,上位机实时显示AGV小车的电源状态、识别的颜色及计数功能。
2025-10-28 15:29:42 11.53MB STM32 K210
1
python2023电赛E题要求基于K210实现同时识别红绿激光,并且利用算法实现坐标修正。K210是一种高性能、低功耗的人工智能芯片,具有强大的计算能力和丰富的图像处理功能,非常适合于视觉识别应用。 首先,针对红绿激光的同时识别,可以利用K210芯片上的神经网络加速器进行实时图像处理和识别。通过训练一个深度神经网络(如卷积神经网络)来识别红绿激光的特征,然后在K210芯片上部署该神经网络模型,实现对红绿激光的实时识别。这样可以确保系统能够同时识别多个激光,并快速做出响应。 其次,针对矩形框的坐标修正,可以利用图像处理算法实现。通过在K210芯片上编写图像处理算法,可以实现对激光点的精确定位和矩形框的坐标修正。例如,可以利用边缘检测算法和轮廓提取算法来识别激光点的位置,然后结合几何变换算法对矩形框的坐标进行修正,确保矩形框能够准确地框出激光的位置。 总之,基于K210芯片实现同时识别红绿激光并实现坐标修正的关键在于充分利用其强大的图像处理和神经网络加速能力,结合相应的算法设计和优化,以实现对激光的快速、准确识别和坐标修正。这将为电赛E题提供一种高效、可靠的解决方案,满足比赛要求,
2025-06-27 20:35:03 16KB
1
Arduino-ArduinoCore-k210.zip,见Arduinoardinocore-K210上Kendryte K210 SOC的代码,Arduino是一家开源软硬件公司和制造商社区。Arduino始于21世纪初,深受电子制造商的欢迎,Arduino通过开源系统提供了很多灵活性。
2025-04-09 18:17:09 6.62MB Arduino
1
k210视频循迹的一种方法
2024-12-19 14:36:30 1.59MB k210
1
k210所需固件,支持v3,v4,以及kflash下载器,pyloader下载器等,以及使用图片
2024-05-18 10:11:34 261.67MB stm32 arm 嵌入式硬件
1
Kendryte IDE :backhand_index_pointing_left: Click open download page Based on a excellent:party_popper: editor 下方内容仅供IDE开发参考,如需使用IDE,请点击上方 Alpha Beta 按钮下载 Status (azure pipelines) Alpha version Item Build Status Main Application Updater Released Application Index Page Platform Status Windows Linux Darwin Beta version Project Build Status Main Application Updater Released Application Index Page Platform Status Windows Linux Darwin Offline
2024-04-10 17:02:34 12.43MB kendryte k210 TypeScript
1
K210视觉模块默认固件库
2024-03-05 23:01:30 1.97MB
1
vscode k210 开发,可以实现按键按下保存当前图片到sd卡中,但是程序有时候会卡在f_open 中。
2023-05-19 18:44:15 9.01MB K210 c语言 vscode
1
有关openmv,opencv.k210的资料,比较全。可以快速上手用来做一些嵌入式相关的小东西或者需要视觉识别的比赛
2023-05-06 21:05:16 745.1MB opencv 课程资源
1