在短距离无线通信中,无线节点或移动终端通常有低成本、小体积、低功耗的要求,因此无法使用复杂的预失真或补偿电路克服功放的非线性影响,这是无线节点或移动终端在上行链路中难以使用高阶QAM调制的重要原因之一。基于QAM矩形星座的特点,提出了一种K-means聚类的改进算法作为中央基站节点的高阶QAM解调算法。在发送信号受到较严重的功放非线性失真时,所提改进算法解调性能更优,算法复杂度更低。 在短距离无线通信中,高阶QAM(Quadrature Amplitude Modulation)调制由于其高传输效率而被广泛采用,但同时也面临着功率放大器(PA)非线性失真的挑战。由于无线节点和移动终端对成本、体积和功耗的严格限制,无法采用复杂的预失真或补偿电路来应对这一问题。为了解决这一难题,一种针对失真QAM信号的改进K-means聚类算法被提出,特别适用于中央基站节点的高阶QAM解调。 传统的K-means聚类算法主要用于数据挖掘和模式识别,而在通信领域,尤其是用于高阶调制的解调,这一应用并不常见。该改进算法的优势在于,在功放非线性导致QAM星座图严重失真的情况下,可以提供更优的解调性能,同时保持较低的算法复杂度。 在K-means解调过程中,关键步骤包括数据点的聚类和星座编号判决。原始的K-means算法可能因为“两星座一簇”或“一星座两簇”的情况导致误判,而改进算法则通过利用星座图的先验知识,比如矩形星座的结构,来更精确地选择初始聚类中心。对于矩形星座,算法首先估算数据点的分布范围,然后进行非均匀网格划分,结合理想星座图剔除无关点,最后选取最接近数据点的网格点作为初始聚类中心,确保每个星座点对应一个聚类中心,提高了解调的准确性。 具体实施上,算法会接收一组数据点的横纵坐标集合,根据QAM调制的阶数K和矩形星座的行数M进行处理。通过调整非均匀划分系数η,可以适应不同的失真程度,以达到最佳的解调效果。这种改进策略有效地降低了由于功放非线性导致的解调错误率,尤其在面对严重的失真时,解调性能优于常规方法。 该改进的K-means聚类算法为短距离无线通信中的高阶QAM解调提供了一种新的解决方案。它巧妙地利用了通信系统内的先验信息,降低了算法复杂度,同时提高了解调的准确性和鲁棒性,对于无线节点和移动终端的低功耗、低成本需求是一个理想的匹配。随着C-RAN架构的推广,这种算法有望在未来的无线通信系统中发挥重要作用,特别是在那些需要高效能、低功耗解调的场景中。
2025-04-13 21:00:56 577KB
1
使用matlab对输入的二维数据进行k-means聚类。因为算法本身的思想,每次聚类的结果可能不同。
2024-11-30 16:59:33 2KB matlab
1
主要介绍了详解Java实现的k-means聚类算法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
1
利用k_means聚类算法的MapReduce并行化实现,为学习hadoop的同学提供参考
2023-11-17 15:02:23 258KB kmeans mapreduce
1
k-means聚类分析MATLAB仿真代码
2023-10-15 14:27:04 3KB matlab kmeans 软件/插件
1
1、任选 2、计算每个数据到 3、计算每个数据到 4、计算3中的新划分得到的每一类的中心位置 5、对于得到的中心点,计算每个数据,到
2023-10-14 21:48:00 397KB kmeans 聚类 算法
1
K-means聚类算法K-means聚类算法
2023-07-10 17:16:25 55.67MB kmeans 聚类 算法
1
k-means聚类算法及matlab代码安全聚类 SAFE(来自Ensemble的单细胞聚合聚类):单细胞RNA-seq数据的聚类集成 尽管最近已经开发出几种方法来使用单细胞RNA-seq(scRNA-Seq)数据对细胞类型进行聚类,但它们利用了数据的不同特征,并且在聚类数量和实际聚类分配方面均产生了不同的结果。 在这里,我们介绍了SAFE聚类,单细胞聚合(来自Ensemble)聚类,这是一种灵活,准确且可靠的聚类scRNA-Seq数据的方法。 SAFE聚类将多种聚类方法的结果作为输入,以构建一个共识解决方案。 SAFE聚类目前嵌入了四种最先进的方法,即SC3,CIDR,Seurat和t-SNE + k -means。 并使用三种基于超图的分区算法将这四种方法的解决方案整合在一起。 SAFE聚类由Yuchen Yang []和Yun Yun []维护。 新闻与更新 2020年9月7日 2.00版已发布 SAFEclustering中使用的Seuart版本已更新为版本3。Seuratv.2不再兼容 SAFE聚类仅接受计数数据。 其他格式,例如FPKM,CPM和RPKM不再兼容 2018年
2023-04-18 14:15:42 4.17MB 系统开源
1
K-Means动态聚类算法源程序,K-means算法进行了重点分析,K-means算法是最为经典的根据聚类中的均值进行聚类划分的聚类算法
2023-04-05 14:07:38 29KB K-Means聚类
1
Data-Mining-Project-2014- 这个存储库包含我的学术课程“数据挖掘”项目的文件。 该项目涉及使用 K-Means 聚类算法进行聚类。 该项目的主要目的是了解聚类并应用 K-Means 聚类算法对数据进行聚类。 数据包括主要赛事的各种网球比赛的结果。 首先,我们应用特征减少来减少数据的字段,然后应用 K-Means 算法。 程序运行的先决条件是: Hadoop 2.3.0 所有节点上的多节点集群设置 程序运行并相应地将数据集划分为 3 个集群:- 低获胜机会 中奖机会 高获胜机会
2023-04-02 20:44:04 55KB Java
1