内容概要:本文深入探讨了自动驾驶Lattice规划算法的关键组成部分——轨迹采样、轨迹评估和碰撞检测。首先介绍了轨迹采样的重要性和实现方式,分别提供了Matlab和C++代码示例。接着讲解了轨迹评估的标准及其与碰撞检测的关系,同样给出了两种编程语言的具体实现。最后,文章还介绍了优化绘图、增加轨迹预测模块和支持自定义场景加载等功能,进一步增强了算法的应用性和灵活性。 适合人群:对自动驾驶技术和Lattice规划算法感兴趣的开发者和技术爱好者,尤其是有一定编程基础并希望通过实际代码加深理解的人群。 使用场景及目标:适用于研究和开发自动驾驶系统的技术人员,旨在帮助他们掌握Lattice规划算法的核心原理和实现细节,从而应用于实际项目中。通过学习本文提供的代码示例,读者可以在自己的环境中复现算法,并根据需求进行扩展和改进。 其他说明:文章不仅提供理论解释,还包括详细的代码实现步骤,特别是针对C++代码的VS2019编译教程和Qt5.15的可视化支持,使读者能够在实践中更好地理解和应用所学知识。
2026-01-25 17:07:35 807KB C++ Matlab
1
内容概要:本文深入探讨了自动驾驶Lattice规划算法的关键步骤,包括轨迹采样、轨迹评估和碰撞检测。详细介绍了Matlab和C++两种语言的具体实现方法及其优缺点。文中不仅提供了完整的代码示例,还涵盖了VS2019编译环境配置以及QT5.15用于可视化的集成方式。此外,文章新增了轨迹预测模块和从MAT文件加载场景的功能,进一步增强了系统的灵活性和实用性。 适合人群:对自动驾驶技术感兴趣的开发者,尤其是有一定编程基础并希望深入了解路径规划算法的人群。 使用场景及目标:适用于研究机构、高校实验室以及相关企业的科研和技术开发项目。主要目标是帮助读者掌握Lattice规划算法的核心原理,并能够基于现有代码进行扩展和优化。 其他说明:文章强调了理论与实践相结合的学习方法,鼓励读者动手实验,通过修改参数观察不同设置对最终规划结果的影响。同时为后续使用强化学习进行自动调参埋下了伏笔。
2026-01-25 17:06:31 710KB
1
内容概要:本文深入探讨了自动驾驶领域的Lattice规划算法,重点讲解了轨迹采样的方法、轨迹评估的标准以及碰撞检测的技术细节。文中不仅提供了详细的理论解释,还给出了Matlab和C++两种不同编程语言的具体代码实现,便于读者理解和实践。此外,文章还介绍了如何利用Qt5.15进行可视化操作,并新增了优化绘图、轨迹预测模块和支持自定义场景加载等功能,进一步增强了算法的应用性和灵活性。 适用人群:对自动驾驶技术感兴趣的科研人员、工程师以及有一定编程基础的学习者。 使用场景及目标:适用于研究和开发自动驾驶系统的人群,旨在帮助他们掌握Lattice规划算法的核心原理和技术实现,提高实际项目中的应用能力。 其他说明:文章提供的代码可以在Visual Studio 2019环境下编译运行,支持通过MAT文件加载不同的测试场景,有助于快速验证算法的有效性并进行改进。
2026-01-25 17:03:35 844KB
1
安全评估标准的发展过程 安全评估的框架 橘皮书(TCSEC) 信息技术安全评估标准(ITSEC) 联邦标准(US Federal Criteria) 共同标准(Common Criteria) 信息保障技术框架(IATF) 计算机信息系统安全保护等级划分准则
2026-01-24 15:36:18 660KB 安全评估
1
本项目旨在通过MATLAB实现基于BP神经网络的小型电力负荷预测模型,并对电力负荷数据进行预处理,采用反向传播算法进行训练,同时在训练过程中优化隐藏层节点数,选择合适的激活函数,并使用均方误差作为性能评估指标,最后通过可视化分析展示预测结果。该项目不仅适用于教学演示,还能够帮助研究人员和工程师深入理解电力负荷预测的算法过程和实际应用。 电力负荷预测作为电力系统规划和运行的重要环节,对于保证电力供应的可靠性和经济性具有关键作用。随着人工智能技术的发展,BP神经网络因其强大的非线性映射能力和自学习特性,在负荷预测领域得到了广泛应用。通过MATLAB这一强大的数学计算和仿真平台,可以更加便捷地实现BP神经网络模型的构建、训练和测试。 在本项目中,首先需要对收集到的电力负荷数据进行预处理。数据预处理的目的是提高数据质量,确保数据的准确性和一致性,这对于提高预测模型的性能至关重要。预处理步骤可能包括数据清洗、数据标准化、去除异常值等,以确保输入到神经网络的数据是有效的。 接下来,利用反向传播算法对BP神经网络进行训练。反向传播算法的核心思想是利用输出误差的反向传播来调整网络中的权重和偏置,从而最小化网络输出与实际值之间的误差。在训练过程中,需要仔细选择网络的结构,包括隐藏层的层数和每层的节点数。隐藏层节点数的选择直接影响到网络的学习能力和泛化能力,需要通过实验和交叉验证等方法进行优化。 激活函数的选择同样影响着神经网络的性能。常用的激活函数包括Sigmoid函数、双曲正切函数、ReLU函数等。不同的激活函数具有不同的特点和应用场景,需要根据实际问题和数据特性来选择最合适的激活函数,以保证网络能够学习到数据中的复杂模式。 性能评估是模型训练中不可或缺的一步,它能够帮助我们判断模型是否已经达到了预测任务的要求。均方误差(MSE)是一种常用的性能评估指标,通过计算模型预测值与实际值之间差值的平方的平均数来衡量模型的预测性能。MSE越小,表明模型的预测误差越小,预测性能越好。 预测结果的可视化分析对于理解和解释模型预测结果至关重要。通过图表展示模型的预测曲线与实际负荷曲线之间的对比,可以直观地评估模型的准确性和可靠性。此外,通过可视化还可以发现数据中的趋势和周期性特征,为电力系统的运行决策提供参考。 整个项目不仅是一个技术实现过程,更是一个深入理解和应用BP神经网络的实践过程。通过本项目的学习,可以掌握如何将理论知识应用于实际问题的解决中,提高解决复杂工程问题的能力。 另外,对于标签中提到的Python,虽然本项目是基于MATLAB实现的,但Python作为一种同样强大的编程语言,也广泛应用于数据科学、机器学习和人工智能领域。对于学习本项目内容的读者,也可以考虑使用Python实现相似的预测模型,以加深对不同编程环境和工具的理解。
2026-01-22 11:04:46 42KB python
1
服务器资源申请评估是IT运维和项目管理中的重要环节,它涉及到服务器硬件配置的选择、系统性能优化以及成本控制。本文将详细解析"服务器资源申请评估工具"及其应用。 我们需要理解服务器资源评估的重要性。在信息化社会,服务器是支撑业务运行的基础,而服务器资源的合理配置直接决定了系统的稳定性和效率。如果资源过剩,会增加不必要的投入;资源不足,则可能导致系统性能下降,甚至服务中断。因此,评估工具的使用可以帮助我们准确预估服务器的需求,避免这些问题的发生。 该"服务器资源评估工具"包含两部分:说明文档和Excel小工具。说明文档通常会详细阐述评估过程、参数设置和计算方法,帮助使用者理解如何进行资源估算。而Excel小工具则是一个实用的辅助工具,通过输入关键参数,如系统的用户并发数和用户活跃度,就能快速计算出应用程序服务器和数据库服务器的资源需求。 用户并发数是指在同一时刻访问系统或应用的用户数量,它是评估服务器负载的重要指标。用户活跃度则是指用户在一定时间内对系统的活动频率,这直接影响到服务器的处理速度和内存需求。在Excel小工具中,你需要根据实际业务预测这些参数,例如考虑业务高峰时段、平均使用时间和用户增长趋势等。 服务器资源主要包括CPU、内存、硬盘存储和网络带宽。CPU处理能力决定了服务器并行处理任务的能力,内存大小影响数据处理速度和系统响应时间,硬盘存储则关乎数据的存储空间,网络带宽决定数据传输的速度。在Excel小工具中,这些资源可能以计算公式的形式,结合用户并发数和活跃度进行量化评估。 此外,还需要考虑服务器操作系统、应用软件、数据库系统等因素,它们都会对资源需求产生影响。例如,某些应用可能对特定CPU架构有偏好,或者数据库系统需要更多的内存来缓存数据。 在完成资源评估后,应根据评估结果选择合适的服务器配置,包括物理服务器或虚拟化环境,以及相应的硬件规格。同时,为了应对未来可能出现的增长,一般会预留一部分冗余资源。 "服务器资源申请评估工具"是IT团队进行高效资源规划的关键工具,它帮助企业节省成本,提升系统性能,确保业务的平稳运行。正确使用这个工具,不仅可以提高工作效率,还能避免因资源规划不当导致的诸多问题。在实际操作中,应结合业务特性、历史数据和未来预测,不断完善和优化评估模型,以实现最佳的服务器资源配置。
2026-01-20 11:13:45 48KB
1
《体检人群骨关节健康蓝皮书》是基于人工智能技术对体检人群骨关节健康状况进行全面评估的权威报告。本报告深入分析了当前体检人群的骨关节健康状况,并预测了未来几年的发展趋势,特别是在2025年及以后。报告详细探讨了各种骨关节疾病的发病情况,包括骨质疏松症、关节炎、骨关节炎等常见疾病,并针对这些疾病提出了相应的预防措施和治疗建议。同时,报告还涉及了人工智能在骨关节健康评估中的应用,如何利用AI技术对骨关节健康进行更加准确的评估和预测。 报告不仅关注于疾病的诊断和治疗,还着眼于通过改善生活习惯和医疗保健措施来提高体检人群的整体骨关节健康水平。在健康生活方式方面,报告提出了包括合理膳食、适度运动、良好生活习惯等在内的全面健康管理建议。在医疗保健方面,报告强调了定期体检的重要性,并倡导针对不同人群制定个性化的体检方案。 此外,报告也着重于未来医疗服务的发展趋势,预测了到2030年骨关节健康服务的方向和变革。其中包含对医疗机构服务模式的更新、对医疗资源的重新配置以及对新型医疗技术的应用等内容。同时,报告也关注了人工智能在提高医疗服务效率和精确性方面的潜力,以及如何通过技术革新来满足人民群众日益增长的健康需求。 在预防和控制骨关节疾病方面,报告提出了多项策略和措施。这些措施涵盖了从社区健康教育、疾病早期筛查、健康风险评估到疾病管理的全方位方案。报告还提到了如何通过政策引导和医疗资源优化,提高整个社会对于骨关节健康问题的认识和重视。 《体检人群骨关节健康蓝皮书》是一份涵盖广泛、内容深入、观点前瞻的健康评估报告。它不仅为医疗专业人士提供了宝贵的数据和分析,也为普通公众提供了关于如何维护骨关节健康的重要指导。通过人工智能技术的应用,这份报告展示了未来骨关节健康管理的新视角和可能的变革。
2026-01-15 17:02:32 3.77MB
1
基于Python+YOLO姿态估计模型+Deepseek开发的一套能够贴合真实训练场景、提供量化评估与个性化语言指导的“智能羽球教练”系统(源码+模型) 系统攻克“多动作连续分析”这一技术难点,融合YOLOv8姿态估计、多动作分段识别算法与生成式AI,开发一套能够贴合真实训练场景、提供量化评估与个性化语言指导的“智能羽球教练”系统,探索人工智能技术在体育科学领域深度应用的新范式。 实现功能: 从羽毛球训练视频中提取运动员人体关键点(姿态识别 / Pose Estimation)。 计算关键技术指标(如:击球时刻身体姿态、步伐移动距离、手臂/膝盖角度等)。 将这些量化指标组织成结构化描述,发送给 DeepSeek 大模型 API,生成中文自然语言评价与改进建议。 在视频或单帧图像上可视化(骨架、关键角度、评分)。
2026-01-14 11:13:51 5.96MB Python
1
华为数据治理方法论,包括:数据治理框架、数据治理组织架构、数据治理度量评估体系以及华为数据治理案例分享。 1目的 1 2面向的读者 2 3数据治理框架 3 3.1数据治理框架 3 3.2数据治理模块域 3 3.3数据治理各模块域之间的关系 4 4数据治理组织架构 7 4.1数据治理组织架构框架 7 4.2数据治理组织职责 7 5数据治理度量评估体系 10 5.1数据治理实施方法论 10 5.2数据治理度量维度 11 5.3数据治理度量评分规则 11 6华为数据治理案例 13 6.1华为数据治理思考 13 6.2华为数据治理实践 14 6.3华为数据治理效果 15 7新冠疫情数据治理思考 16 8DAYU 方法论产品落地 17 ### 华为数据治理方法论解析 #### 一、目的 华为的数据治理方法论旨在提供一套全面、系统化的数据管理方案,帮助企业实现数据资产的有效管理和利用。通过建立完善的数据治理体系,确保数据的质量、安全性和合规性,从而提升企业的决策效率和业务竞争力。 #### 二、面向的读者 本方法论主要面向企业高级管理层、IT部门负责人、数据治理团队成员以及其他与数据管理相关的人员。这些读者将从中了解到如何构建高效的数据治理体系,以及如何在实际工作中应用这一理论框架。 #### 三、数据治理框架 ##### 3.1 数据治理框架 华为的数据治理框架包含以下几个核心组成部分: - **战略层**:定义数据治理的目标、原则和策略。 - **政策层**:制定具体的数据治理政策和标准。 - **操作层**:负责日常的数据治理活动,如数据质量控制、元数据管理等。 - **技术支持层**:提供必要的技术工具和支持,保障数据治理流程的顺利执行。 ##### 3.2 数据治理模块域 数据治理模块域是指在数据治理框架下,根据不同的功能需求划分的领域。主要包括但不限于: - **数据质量管理**:确保数据的准确性、完整性和一致性。 - **元数据管理**:记录数据的来源、含义及其与其他数据的关系。 - **数据安全与隐私保护**:保障数据的安全性和个人隐私不受侵犯。 - **数据生命周期管理**:管理数据从创建到销毁的整个过程。 - **合规性管理**:确保数据处理符合法律法规的要求。 ##### 3.3 数据治理各模块域之间的关系 各个模块域之间存在着紧密的联系和相互依赖的关系。例如,数据质量管理是元数据管理的基础,而元数据管理又支持数据生命周期管理的高效运行。这种相互关联的设计有助于形成一个闭环的数据治理体系,确保数据治理工作的全面性和有效性。 #### 四、数据治理组织架构 ##### 4.1 数据治理组织架构框架 华为的数据治理组织架构主要包括三个层级: - **最高决策层**:通常由企业高层领导组成,负责制定总体策略和目标。 - **管理层**:包括数据治理委员会等机构,负责监督和指导数据治理工作的实施。 - **执行层**:由数据治理团队和相关部门组成,具体负责数据治理活动的执行。 ##### 4.2 数据治理组织职责 - **最高决策层**:设定数据治理的战略方向,审批相关政策和标准。 - **管理层**:监督数据治理项目的进展,解决跨部门间的问题。 - **执行层**:执行具体的数据治理任务,如数据质量检查、数据清洗等。 #### 五、数据治理度量评估体系 ##### 5.1 数据治理实施方法论 华为的数据治理实施方法论基于PDCA(Plan-Do-Check-Act)循环原理,确保数据治理工作能够持续改进。 - **规划阶段**(Plan):定义目标和策略。 - **执行阶段**(Do):实施数据治理计划。 - **检查阶段**(Check):评估执行结果与预期目标之间的差距。 - **行动阶段**(Act):根据检查结果调整策略和计划。 ##### 5.2 数据治理度量维度 数据治理度量维度通常包括以下方面: - **数据质量**:衡量数据的准确性、完整性等。 - **数据安全性**:评估数据保护措施的有效性。 - **数据合规性**:确保数据处理活动符合法律法规要求。 - **数据价值**:评估数据对企业业务的价值贡献。 ##### 5.3 数据治理度量评分规则 为了量化数据治理的效果,需要制定一套评分规则。评分规则应该明确、可操作且易于理解,以便于不同层级的管理者都能够准确地评估数据治理工作的成效。 #### 六、华为数据治理案例 ##### 6.1 华为数据治理思考 华为在数据治理方面的思考强调了数据作为企业核心资产的重要性。通过对数据进行有效管理,不仅可以提高数据的可用性和价值,还能够降低数据风险,增强企业的市场竞争力。 ##### 6.2 华为数据治理实践 - **统一数据标准**:建立了一套标准化的数据管理体系,确保数据的一致性和可比性。 - **自动化工具支持**:开发了一系列自动化工具,用于数据清洗、转换等工作,提高了数据治理的效率。 - **持续监控机制**:建立了持续的数据监控机制,及时发现并解决问题。 ##### 6.3 华为数据治理效果 通过实施数据治理方法论,华为取得了显著的成效: - **提升了数据质量**:数据错误率大幅下降,数据的准确性和完整性得到了显著改善。 - **加强了数据安全性**:通过实施严格的数据保护措施,有效防止了数据泄露等安全事件的发生。 - **优化了决策流程**:高质量的数据支持了更加精准的业务决策,提高了企业的运营效率。 #### 七、新冠疫情数据治理思考 在新冠疫情期间,华为特别关注了如何利用数据治理来应对公共卫生危机。例如,通过大数据分析技术,可以实时监测疫情动态,为疫情防控提供科学依据。 #### 八、DAYU 方法论产品落地 华为的DAYU平台是一套集成了数据集成、存储、治理等功能的一站式大数据处理平台。通过将数据治理方法论融入DAYU平台,企业可以更轻松地实现数据的高效管理和利用。 总结来看,华为的数据治理方法论不仅提供了一个全面的数据治理体系框架,还结合了大量的实践经验和技术支持,为企业提供了切实可行的数据治理解决方案。通过不断优化和完善数据治理体系,华为成功地提升了自身在数据领域的竞争力,并为其他企业树立了良好的典范。
2026-01-06 17:25:23 913KB 数据治理
1
住宅空调负荷可调度潜力评估方法与行为优化研究:以动态模型及成本效益为核心的分析实践,住宅空调负荷可调度潜力评估:基于分段分析与成本效益优化的深度探究,住宅空调负荷可调度潜力评估 摘要:代码主要做的是住宅空调负荷的可调度潜力评估,因为住宅空调负荷是一种具有一定灵活性和可控性的需求响应资源,本代码首先评估单一客户的空调可控潜力,进而发展为大规模地区的空调的需求响应潜力以及规模的评估。 采用静态和动态模型参数估计的分段分析方法,深入分析了空调负荷的消费行为,并针对不同时间尺度的需求响应问题,以成本效益为目标,优化空调负荷的需求响应行为。 最后以实际的算例数据,验证了所提出方法的准确性和鲁棒性,代码出图效果极好,而且研究的问题比较全面,适合在此基础上稍加修改形成自己的成果 。 本代码为文章复现,具体题目可见下图; ,住宅空调负荷; 可调度潜力评估; 灵活性与可控性; 需求响应资源; 分段分析方法; 静态与动态模型; 成本效益优化; 鲁棒性验证; 出图效果。,住宅空调负荷调度潜力分析与优化策略研究
2026-01-04 22:45:16 2.32MB
1