高斯粒子滤波算法重要性权值方差不会随迭代次数的增加而增加, 能够较好地解决粒子退化问题, 但其重要性密度函数没有考虑最新的量测信息, 导致有效粒子数减少, 算法滤波性能下降. 针对该问题, 提出一种基于Gaussian-Hermite 滤波(GHF) 的高斯粒子滤波算法, 采用GHF构造高斯粒子滤波的重要性密度函数, 考虑最新的量测信息, 增加有效粒子数, 提高算法的滤波精度. 仿真结果表明, 所提出算法的滤波精度明显优于高斯粒子滤波算法.