手写数学符号数据集 该数据集来自。原始数据以SQL形式提供。我已经将每条记录转换为32x32的numpy数组,可以在找到。 我还对模型训练做了一些处理(转换为float32 ,添加通道维数,规范化,将类数限制为500),并上传。 细节 实例数:210454(原始)/ 195244(已处理)。 图片尺寸:32x32。 类数:1098(原始),/ 500(已处理)。
2023-01-31 17:05:10 292KB Python
1
matlab手写体识别代码光学手写字符识别 该程序使用 Matlab 的计算机视觉工具箱将手写图片转换为可打印的文本。 “emnist-letters.mat”文件是用于训练神经网络的数据集。 运行代码: 确保文字的图片,以及以下MATLAB文件在同一个文件夹中:MultiLineSegment.m、myNNfun.m、NNreturnLetter.m、ReturnLetter3.m、OneLineSegment.m。 如果图片有多行,请运行 MultiLineSegment.m 文件。 如果图片只有一行,可以运行 MultiLineSegment.m 或 OneLineSegment.m。 对于 2 和 3,确保图片名称在代码的 imread('') 部分。 这应该是运行文件所需的全部内容。
2022-12-12 19:58:50 6.26MB 系统开源
1
使用手写识别的计算器 这个项目是我面向对象编程课程的最后一个项目。 下面介绍该算法为显示包含数学方程式的输入图像的结果而采取的步骤。 1-图像分割 该程序对输入图像进行分段,仅提取所需的数字或运算符进行计算,然后将每个数字或运算符转换为28x28像素的小图像,这将作为神经网络的输入。 程序接受的数字范围是0-9 ,有效的操作是:加法,减法,乘法,除法,幂和使用括号。 2-分类 从算法的第一步中提取的缩略图被馈送到仅具有一个隐藏层的预训练神经网络,该神经网络的预测是S形激活的向量,每个描述输入的依存概率p(i)图像属于第(i)类。 3-计算结果 对每个分割的图像进行分类后,我们将此分类转换为相应的数字或运算符,并将其隐含为表达式字符串。 然后,我们将此字符串传递给基于堆栈的计算器以计算其结果。 然后使用简单的GUI将所有这些包装到JavaFX应用程序中。 将发布文档,以获取有关算法步骤以及
1
Neural Networks for Handwritten Digit Recogn 吴恩达机器学习 jupyter note 版本编程作业 机器学习与数据挖掘 用神经网络识别手写数字0-9
2022-10-09 18:07:02 6.86MB 机器学习 神经网络 数据挖掘
1
svm算法手写matlab代码使用HOG功能和SVM的手写数字识别 在这个知识库中,我将提供一个MatLab和一个Python,用于使用HOG功能和SVM进行手写数字识别。 MatLab和Python代码的结构相同,分为三(3)个部分: 步骤1:资料准备步骤2:HOG功能计算步骤3:设置并运行SVM 步骤1:资料准备 在代码的第一部分,加载了MNIST数据集[1]。 数据集与标签一起分为训练集和测试。 训练和测试集中的总位数分别为60000和10000。 标签是十(10)位数字(0到9)。 在MatLab中,每个数字由784个元素的向量表示。 784个元素的向量将在代码中稍后调整大小,以形成28x28像素的图像。 在Python中,由于每个数字均由28x28像素的图像表示,因此跳过了调整大小步骤。 步骤2:HOG功能计算 从每个28x28像素图像中计算出定向梯度直方图(HOG)特征向量[2]。 每个向量由324个元素组成。 整个324个元素的特征向量将在以后用于训练支持向量机(SVM)。 步骤3:设置并运行SVM 支持向量机(SVM)[3]是我在本示例中使用的多类分类器,用于对手写数字
2022-09-25 12:17:59 29.09MB 系统开源
1
手写字符识别 这是一个可识别手写字符的深度学习AI系统,在这里我使用chars74k数据集来训练模型 先决条件: Python 水蟒 点子 虚拟环境 从下载手写数据集 每个班级只有55个样本,因此我编写了脚本来创建具有不同背景色的重复图像。 克隆此存储库并使用以下命令创建virtualenv virtualenv venv source venv/bin/activate 导航到克隆目录 pip install -r requirements.txt 为数据集创建重复图像 python generate_dataset.py 打开笔记本 jupyter notebook
2022-09-24 08:30:10 124KB 系统开源
1
使用TensorFlow进行手写文本识别 使用TensorFlow(TF)实现并在IAM离线HTR数据集上接受训练的手写文本识别(HTR)系统。 这种神经网络(NN)模型可以识别分段词图像中包含的文本,如下图所示。 由于这些单词图像小于完整文本行的图像,因此可以将NN保持较小,并且在CPU上进行训练是可行的。 正确识别了验证集中的3/4个单词,字符错误率约为10%。 如果您需要更大的输入图像(例如,识别文本行)或想要更好的识别精度,我将给出一些提示,以扩展模型。 运行演示 转到model/目录并解压缩model.zip文件(已在IAM数据集上进行了预训练)。 请注意,将解压缩的文件直接放置在model/目录中,而不要放置在解压缩程序创建的某些子目录中。 然后,转到src/目录并运行python main.py 输入图像和预期输出如下所示。 > python main.py Validat
2022-07-18 20:32:31 18.17MB Python
1
基于卷积神经网络手写体数学公式识别与计算 一、项目介绍 项目已经可以计算含有PI或e的四则运算公式及指数运算公式。 项目可以进行较为简单的一元一次方程或一元二次方程计算。 测试网站 项目使用tensorflow2.0作为开发框架,采用keras搭建卷积神经网络。 数据集采集了mnist及emnist中的数字、字母数据,运算符号为项目组手写制作。 图片分割使用了连通域与水平投影共同实现。 项目通过flask框架部署在服务器。 这是本人参与制作的第一个比课程设计大的项目。仅用来记录自己的代码。 同时也欢迎各位大佬指点。 二、项目主要代码及功能介绍 网络搭建及模型制作 train_model/tf_keras_cnn_mnist_model.ipynb 数据量较小采用数据增强 重复两层每两次卷积一次池化一次Dropout的操作,最后softmax全连接 由于租借用的训练服务器到期,故没有训练好的
2022-05-28 10:18:33 12.59MB JavaScript
1
mnist-matlab:用于MATLAB的MNIST手写数字数据库
1
使用深度学习的多手写数字识别(TensorFlow-Keras) 要求 TensorFlow(Keras) 的Python 3.5 + Numpy(+ MKL适用于Windows) PIL(枕头) Opencv的 tkinter(python GUI) 关于项目 使用CNN(卷积神经网络)在MNIST数据集上训练模型 将模型另存为'mnist.h5'(train_digit_recognizer.py) 使用tkinter GUI制作画布并在其上写数字 使用PIL在画布上获取“手写数字”的副本,并以“ img_ {image_number} .png”的形式保存到“ / img”中 同样在OpenCV帮助下,通过识别轮廓,它可以处理多个数字 使用保存的模型'mnist.h5'从画布预测保存的手写数字图像 屏幕截图 绘图画布... 输出图像... 使用PIL-ImageGrab
2022-05-09 16:09:51 1.06MB opencv machine-learning keras pillow
1