内容概要:本文介绍了如何在MATLAB中实现基于POA(Pelican Optimization Algorithm)优化的卷积双向长短期记忆神经网络(CNN-BiLSTM),用于多输入单输出的时间序列回归预测。该模型通过CNN提取局部特征,BiLSTM处理上下文信息,POA优化超参数,提高了模型的预测性能。文章详细讲解了数据预处理、模型构建、训练和评估的全过程,并提供了完整的代码示例和图形用户界面设计。 适合人群:具备MATLAB编程基础的数据科学家、研究人员和技术爱好者。 使用场景及目标:适用于需要高精度时间序列预测的应用,如金融市场预测、气象数据预测、工业过程监控等。用户可以通过该模型快速搭建并训练高质量的预测模型。 其他说明:未来的研究可以考虑引入更多先进的优化算法,拓展模型的输入输出结构,增强图形用户界面的功能。使用过程中需要注意数据的正常化和防止过拟合的问题。
2025-04-08 09:42:36 45KB 时间序列预测 Matlab 机器学习
1
基于GA-BP多变量时序预测的优化算法模型——代码文注释清晰,高质量多评价指标展示程序,GA-BP神经网络优化多变量时序预测模型:基于遗传算法的BP神经网络多维时间序列预测程序,GA-BP多变量时序预测,基于遗传算法(GA)优化BP神经网络的多维时间序列预测,多输入单输出 程序已经调试好,无需更改代码替数据集即可运行数据为Excel格式。 1、运行环境要求MATLAB版本为2018b及其以上 2、评价指标包括:R2、MAE、MBE、RMSE等,图很多,符合您的需要 3、代码文注释清晰,质量极高 4、测试数据集,可以直接运行源程序。 替你的数据即可用 适合新手小白 ,关键词:GA-BP多变量时序预测; 遗传算法优化BP神经网络; 多维时间序列预测; 多输入单输出; MATLAB版本2018b; 评价指标(R2, MAE, MBE, RMSE); 代码文注释清晰; 测试数据集; 新手小白。,基于GA-BP算法的多变量时序预测模型:高注释质量、测试数据集直接可用
2025-04-07 16:40:16 2.42MB
1
智能车辆路径跟踪控制是自动驾驶和无人驾驶技术中的关键环节,它涉及到车辆如何准确地沿着预设路线行驶。在本主题中,我们将深入探讨两种主要的控制算法:纯跟踪控制与Stanley控制算法,以及可能涉及的其他线性相关算法。这些算法通常在MATLAB环境中进行仿真和开发。 纯跟踪控制是一种基础的车辆路径跟踪方法,它通过比较车辆的实际位置与期望轨迹之间的偏差来调整车辆的转向角。这种控制策略的核心在于设计合适的控制器,如PID控制器,以减小位置误差并确保车辆稳定行驶。在MATLAB中,可以通过建立车辆模型,定义目标路径,然后设置控制器参数来实现这种控制策略的仿真。 Stanley控制算法是一种更先进的路径跟踪方法,由Christopher Thrun、Michael Montemerlo和Dmitry Kononenko于2005年提出。它考虑了车辆的前向传感器(如激光雷达或摄像头)提供的信息,以确定车辆的横向和纵向偏差。Stanley算法将这两个偏差转换为方向盘角度,使车辆能够无滑移地跟踪路径。在MATLAB中,实现Stanley控制通常包括三个步骤:获取传感器数据、计算偏差和转换为方向盘命令。 除了这两种控制算法,还有其他线性相关算法可以用于路径跟踪,如LQR(线性二次调节器)和模型预测控制(MPC)。LQR通过最小化一个性能指标(如误差和控制输入的能量)来设计控制器。MPC则是一种前瞻性的控制策略,它考虑到未来多个时间步的预期行为,以优化控制决策。 在提供的压缩包文件中,"智能车辆路径跟踪.html"可能是对这些概念的详细解释,或者是一个MATLAB仿真演示的说明。而"3.jpg"、"2.jpg"、"1.jpg"可能是相关算法的示意图或仿真结果的截图,可以帮助理解控制算法的工作原理。"智能车辆路径跟踪控制纯.txt"可能是纯跟踪控制算法的MATLAB代码,供学习和参考。 智能车辆路径跟踪控制是自动驾驶技术的重要组成部分,涉及到控制理论、传感器融合和车辆动力学等多个领域。通过MATLAB这样的工具,我们可以对这些复杂的算法进行建模、仿真和优化,为实际应用提供坚实的基础。
2025-04-07 07:39:51 2.4MB matlab
1
无人机四旋翼PID控制和自适应滑模控制轨迹跟踪仿真研究:三维图像与matlab Simulink模拟分析,无人机仿真 无人机四旋翼uav轨迹跟踪PID控制matlab,|||simulink仿真,包括位置三维图像,三个姿态角度图像,位置图像,以及参考位置实际位置对比图像。 四旋翼无人机轨迹跟踪自适应滑模控制,matlab仿真。 ,核心关键词:无人机仿真; 四旋翼UAV; 轨迹跟踪; PID控制; Matlab; Simulink仿真; 位置三维图像; 姿态角度图像; 位置图像; 参考位置实际位置对比图像; 自适应滑模控制。,"无人机四旋翼轨迹跟踪的PID与自适应滑模控制Matlab/Simulink仿真研究"
2025-04-06 21:29:45 231KB 哈希算法
1
《labuladong算法小抄最新完整版》是算法学习领域的一份重要参考资料,由知名算法博主labuladong编写。这份资料集成了作者在算法领域的深入理解和实践,旨在帮助读者快速掌握和理解各种常见的算法思想与技巧。下面将详细阐述这份资料中涉及的主要算法知识点。 1. **基础算法**:资料涵盖了排序、搜索等基础算法,如快速排序、归并排序、二分查找等。这些是所有算法学习者的必备技能,通过深入理解它们的工作原理,可以提升解决实际问题的能力。 2. **图论算法**:包括最短路径算法(Dijkstra、Floyd-Warshall、Bellman-Ford)、最小生成树(Prim、Kruskal)等。这些算法在解决网络优化问题、社交网络分析等领域有广泛应用。 3. **动态规划**:动态规划是一种求解最优化问题的强大方法,如背包问题、最长公共子序列、斐波那契数列等经典问题。资料深入浅出地介绍了动态规划的思路和状态转移方程。 4. **回溯法**:回溯法用于解决组合优化问题,如八皇后问题、N皇后问题、括号生成等。通过深度优先搜索策略,回溯法可以在多解问题中找到满足条件的所有解。 5. **贪心算法**:贪心算法在每一步选择局部最优解,以期望得到全局最优解。如霍夫曼编码、活动选择问题、区间调度等,贪心策略常被用于简化问题复杂度。 6. **分治法**:分治法将大问题分解为若干个相同或相似的小问题,分别解决后再合并结果。例如,快速排序、大整数乘法、矩阵乘法等问题都可采用分治策略。 7. **数据结构**:资料中还会详细介绍各种常用数据结构,如链表、栈、队列、树(二叉树、平衡树、堆)、图等,以及它们在算法中的应用。 8. **递归与迭代**:递归和迭代是编程中常用的两种控制流程,递归用于解决具有自相似性质的问题,而迭代则更适用于循环结构。理解这两种方法及其转换对解决问题至关重要。 9. **位运算**:位运算在算法中有着独特的优势,尤其是在优化空间和时间复杂度时。资料会讲解如何巧妙利用位运算解决实际问题。 10. **滑动窗口**:滑动窗口是处理数组或字符串问题的一种高效方法,常用于查找最大值、最小值、连续子序列等。 《labuladong算法小抄官方完整版.pdf》这份资料详尽地解释了这些算法知识,配以实例解析和习题练习,适合初级到中高级的程序员进行算法学习和提高。无论你是准备面试,还是希望提升自己的编程能力,这都是值得阅读的一份宝贵资源。
2025-04-06 19:17:22 98.9MB
1
基于LQR算法的独立四轮驱动横摆角速度控制模型与资料解析,入门必备,对比MPC和SMC算法的首选模板,基于LQR算法的横摆角速度控制技术研究:四轮独立驱动与动力学模型分析,稳定性因素考虑,与其他算法对比说明,四轮独立驱动横摆角速度控制,LQR 基于LQR算法的 基于二自由度动力学方程,通过主动转向afs和直接横摆力矩dyc实现的横摆角速度跟踪 ,模型包括期望横摆角速度,质心侧偏角,稳定性因素,lqr模块等模块,作为lqr入门强烈推荐。 还有详细的lqr资料说明,可以作为基本模板,和其他算法(mpc smc)做对比等 ,四轮独立驱动;横摆角速度控制;LQR算法;二自由度动力学方程;主动转向afs;直接横摆力矩dyc;横摆角速度跟踪;lqr模块;稳定性因素;算法对比。,基于LQR算法的车辆横摆角速度控制系统设计与研究
2025-04-06 16:41:06 1.71MB edge
1
改进麻雀搜索算法在FMD分解中的应用与优化——ISSA-fmd算法的研究与对比分析,改进麻雀搜索算法优化fmd分解(ISSA–fmd),改进麻雀搜索算法(ImprovedSparrow Search Algorithm,ISSA)是由Song W等人基于麻雀搜索算法提出一种改进麻雀搜索算法。 该算法通过三个改进策略,提高算法的收敛精度和避免陷入局部最优。 提供参考文献以及算法对比图。 改进策略: 1.基于混沌映射初始化种群策略 2.基于非线性递减权重更新发现者策略 3.改进加入者位置更新策略 ,ISSA; fmd分解; 混沌映射初始化种群策略; 非线性递减权重更新发现者策略; 改进加入者位置更新策略,改进ISSA算法优化FMD分解的探索与对比
2025-04-06 14:41:53 1.29MB
1
Canny算法的改进及FPGA实现,详细介绍FPGA的开发流程。
2025-04-06 09:49:24 984KB Canny
1
内容概要:本文详细探讨了基于时间到碰撞(TTC)和驾驶员安全距离模型的自动紧急制动(AEB)算法在Carsim与Simulink联合仿真环境下的实现方法和技术要点。文中介绍了AEB算法的核心模块,包括CCR M、CCRS、CCRB模型,以及二级制动策略和逆制动器模型的设计思路。同时,还讨论了控制模糊PID模型的应用及其参数调整方法。此外,文章强调了联合仿真过程中Carsim和Simulink各自的角色分工,即Carsim负责车辆动力学模拟,Simulink承担控制系统建模任务,两者协同工作以完成对AEB系统的闭环仿真。为了验证AEB算法的有效性,作者依据CNCAP和ENCAP法规设置了多种测试场景,并针对可能出现的问题提出了具体的解决方案。 适合人群:从事自动驾驶技术研发的专业人士,尤其是关注AEB系统设计与仿真的工程师。 使用场景及目标:适用于希望深入了解AEB算法原理并掌握其在联合仿真环境下实现流程的研究人员。主要目标是在满足相关法规要求的前提下,提高AEB系统的稳定性和可靠性。 其他说明:文中提供了大量实用的技术细节和代码片段,有助于读者更好地理解和应用所介绍的方法。
2025-04-06 09:46:03 126KB
1
网络爬虫:通过Python实现新浪新闻的爬取,可爬取新闻页面上的标题、文本、图片、视频链接(保留排版) 推荐算法:权重衰减+标签推荐+区域推荐+热点推荐 权重衰减进行用户兴趣标签权重的衰减,避免内容推荐的过度重复 标签推荐进行用户标签与新闻标签的匹配,按照匹配比例进行新闻的推荐 区域推荐进行IP区域确定,匹配区域性文章进行推荐 热点推荐进行新闻热点的计算的依据是新闻阅读量、新闻评论量、新闻发布时间 涉及框架:Django、jieba、selenium、BeautifulSoup、vue.js
2025-04-05 22:38:15 29.54MB vue.js python 推荐算法
1