本文详细介绍了如何利用Google Earth Engine (GEE)平台批量下载Landsat8地表温度(LST)数据的方法。文章首先阐述了地表温度的重要性及其在气候、生态等领域的应用价值,随后提供了完整的代码框架和分步骤详细解析,包括感兴趣区域(ROI)导入与地图配置、Landsat8影像掩膜与定标函数定义、时间范围设置以及逐月影像合成、LST计算与批量导出等核心步骤。代码实现了对指定区域2024年逐月Landsat8卫星数据的筛选、云去除、辐射定标、地表温度计算与批量导出,适用于生态、气候等领域的时空动态分析。文章还提供了代码关键注意事项和运行结果,帮助读者更好地理解和应用该方法。 地表温度(LST)是研究地球表面热能流动与气候相互作用的重要参数。获取准确的LST数据对于分析气候模式、评估生态环境变化以及支持农业生产等方面具有极其重要的意义。Landsat 8 卫星作为美国地质调查局(USGS)和NASA联合发射的一颗地球观测卫星,能够提供覆盖全球范围的高清多光谱数据,是获取LST数据的重要来源。 Google Earth Engine(GEE)是一个强大的云平台,提供了海量地球科学数据的存储和分析能力。GEE平台支持各种类型的地球科学数据,包括Landsat系列卫星数据,且其内置的API功能允许用户直接在云端处理和分析这些数据。利用GEE平台,可以非常便捷地进行批量数据处理和下载,大大降低了进行大规模遥感分析的门槛。 在利用GEE平台下载Landsat8 LST数据时,首先需要定义感兴趣区域(ROI),即确定需要分析和下载数据的地理位置。接下来,根据Landsat8卫星的特性,需要设定时间范围,确定分析的时间跨度。此外,对于Landsat8影像的处理,需要进行影像的掩膜处理,以剔除云层和云影的影响。为了确保数据的准确性,还需要对影像进行辐射定标。 辐射定标之后,可以计算地表温度。Landsat8提供的是光谱数据,需将光谱数据转换为温度数据,此过程涉及到复杂的物理模型和算法。当LST计算完成后,还需要通过逐月影像合成的方式整合数据,从而形成一系列时间序列数据集,这对于研究地表温度随时间的变化趋势非常重要。 文章中提到的可运行源码,实际上是一个程序化的解决方案,不仅提供了核心步骤的代码框架,还详细解析了每一步的操作。代码中可能包含有自动筛选数据、云量剔除、辐射定标、温度计算以及最终数据导出等功能。这些代码示例和说明,可以帮助读者更加直观地理解如何使用GEE进行遥感数据处理,同时,也便于读者根据自身需求调整和优化代码。 由于Landsat8影像数据量庞大,逐个下载和处理这些数据将耗费大量的时间和精力。GEE平台的优势在于其强大的数据处理能力和并行计算能力,能够快速响应用户的分析需求,实现批量处理和下载。因此,这种方法特别适合进行大规模、长时间序列的遥感数据分析,对于生态学、气候学等领域的研究具有很高的应用价值。 值得注意的是,在运行相关代码时,用户需要注意代码中的一些关键事项,如版本兼容性、API的调用限制等,以避免运行时发生错误。此外,文章还可能提供了运行结果的截图或数据,帮助读者验证代码的运行效果,并指导读者如何解读和应用下载的数据。 文章提供的信息和代码示例,将大大促进遥感科学领域研究者的工作效率,特别是在进行时空动态分析时,这些数据和方法将提供强有力的技术支持。对于那些缺乏专业编程背景的研究人员来说,本文所提供的详细教程和完整代码,无疑为他们提供了一种易于上手和操作的解决方案。
2025-11-30 16:39:09 6KB Google Earth Engine
1
内容概要:本文档详细介绍了如何使用Google Earth Engine (GEE) 对Sentinel-2卫星图像进行云层遮罩处理的方法。首先定义了一个函数`funcao`用于提取QA60波段并设置云和卷云的位掩码,确保这两个条件都为0时才保留图像数据。然后通过`ImageCollection`方法获取指定时间范围内的COPERNICUS/S2影像集,并使用过滤器排除云量超过20%的影像。最后利用`.map(funcao)`将云层遮罩应用到整个影像集合,并通过中值合成创建马赛克图像,最终展示RGB波段的处理结果。; 适合人群:对遥感数据分析、地理信息系统(GIS)以及Google Earth Engine平台有一定了解的研究人员和技术人员。; 使用场景及目标:①学习如何在GEE平台上处理Sentinel-2卫星数据;②掌握云层遮罩技术,提高影像质量,为后续分析提供更清晰的数据源;③理解位运算在遥感影像处理中的应用。; 阅读建议:读者应具备基本的JavaScript编程技能和对遥感概念的理解,在实践中逐步探索代码细节,尝试调整参数以适应不同研究区域的需求。
2025-07-07 15:07:33 1KB Cloud Masking Sentinel-2
1
GEE——连续变化检测和分类(CCDC).html
2024-09-19 16:32:04 1.21MB
1
GEE补丁查看WZL编辑器,各种系统都可以用! 传奇GEE引擎补丁素材查看
2024-07-28 12:02:04 3.39MB WZL编辑器
1
遥感生态指数(Remote Sensing Ecological Index)是一种基于遥感技术对生态系统进行监测和评估的指数,它通过对地表反射光谱数据的分析,反映出生态系统的植被覆盖程度、植被生长状况、土地利用类型、土地覆盖变化等生态环境信息。 遥感生态指数通常采用遥感影像数据来计算,包括多光谱影像、高光谱影像、雷达影像等。常用的遥感生态指数包括植被指数(Vegetation Index)、归一化植被指数(Normalized Difference Vegetation Index,NDVI)、土地覆盖指数(Land Cover Index)等。 其中,植被指数可以用来反映植被的生长状况,归一化植被指数则是常用的植被指数,可以通过计算近红外波段和红光波段反射率之间的比值来计算;土地覆盖指数则可以用来反映不同土地利用类型的空间分布情况,如城市、耕地、林地、草地等。
2023-05-01 17:15:13 9KB gee rsei
1
数据中的shp是自己的,大家有需要可以上传自己的shp文件,这里不上传了
2022-11-21 18:24:59 5.75MB GEE
1
Harmonics_and_z分数_GEE_code Google Earth Engine代码可根据MODIS时间序列数据计算z得分和谐波分析。
2022-10-26 14:28:20 13KB
1
gee-Landsat影像 随机森林分类代码
2022-10-15 14:07:55 54KB gee 随机森林 代码 分类
基于GEE水稻监测的汇报PPT,对于学习GEE进行遥感分析有较高价值。
2022-10-10 17:54:33 1.82MB 云计算 GEE 遥感
1
Google Earth Engine学习资料
2022-06-09 19:48:04 15.28MB 学习 GEE
1