图学习与强化学习如何结合是个重要的问题,来自东北大学的学者最近发布了《图强化学习》综述,总结了GRL方法的方法描述、开源代码和基准数据集,非常值得关注!图挖掘任务产生于许多不同的应用领域,包括社交网络、交通运输、电子商务等,近年来受到了理论和算法设计界的极大关注。在图数据挖掘任务中,使用正在研究中的强化学习(RL)技术进行了一些开创性的工作。然而,这些图挖掘算法和RL模型分散在不同的研究领域,难以对不同的算法进行比较。在本综述中,我们提供了RL模型和图挖掘的全面概述,并将这些算法推广到图强化学习(GRL)作为一个统一形式化。我们进一步讨论了GRL方法在各个领域的应用,并总结了GRL方法的方法描述、开源代码和基准数据集。最后,提出了未来可能需要解决的重要方向和挑战。这是对GRL文献进行全面考察的最新成果,为学者提供了一个全球视野,也为该领域以外的学者提供了学习资源。此外,我们为想要进入这个快速发展的领域的感兴趣的学者和想要比较GRL方法的专家创建了一个在线开源软件。
1