GJK计算碰撞代码的应用
//-----------------------------------------------------------------------------
// Torque 3D
// Copyright (C) GarageGames.com, Inc.
//
// The core algorithms in this file are based on code written
// by G. van den Bergen for his interference detection library,
// "SOLID 2.0"
//-----------------------------------------------------------------------------
#include "core/dataChunker.h"
#include "collision/collision.h"
#include "sceneGraph/sceneObject.h"
#include "collision/convex.h"
#include "collision/gjk.h"
//----------------------------------------------------------------------------
static F32 rel_error = 1E-5f; // relative error in the computed distance
static F32 sTolerance = 1E-3f; // Distance tolerance
static F32 sEpsilon2 = 1E-20f; // Zero length vector
static U32 sIteration = 15; // Stuck in a loop?
S32 num_iterations = 0;
S32 num_irregularities = 0;
//----------------------------------------------------------------------------
GjkCollisionState::GjkCollisionState()
{
a = b = 0;
}
GjkCollisionState::~GjkCollisionState()
{
}
//----------------------------------------------------------------------------
void GjkCollisionState::swap()
{
Convex* t = a; a = b; b = t;
CollisionStateList* l = mLista; mLista = mListb; mListb = l;
v.neg();
}
//----------------------------------------------------------------------------
void GjkCollisionState::compute_det()
{
// Dot new point with current set
for (int i = 0, bit = 1; i < 4; ++i, bit <<=1)
if (bits & bit)
dp[i][last] = dp[last][i] = mDot(y[i], y[last]);
dp[last][last] = mDot(y[last], y[last]);
// Calulate the determinent
det[last_bit][last] = 1;
for (int j = 0, sj = 1; j < 4; ++j, sj <<= 1)
{
if (bits & sj)
{
int s2 = sj | last_bit;
det[s2][j] = dp[last][last] - dp[last][j];
det[s2][last] = dp[j][j] - dp[j][last];
for (int k = 0, sk = 1; k < j; ++k, sk <<= 1)
{
if (bits & sk)
{
int s3 = sk | s2;
det[s3][k] = det[s2][j] * (dp[j][j] - dp[j][k]) +
det[s2][last] * (dp[last][j] - dp[last][k]);
det[s3][j] = det[sk | last_bit][k] * (dp[k][k] - dp[k][j]) +
det[sk | last_bit][last] * (dp[last][k] - dp[last][j]);
det[s3][last] = det[sk | sj][k] * (dp[k][k] - dp[k][last]) +
det[sk | sj][j] * (dp[j][k] - dp[j][last]);
}
}
}
}
if (all_bits == 15)
{
det[15][0] = det[14][1] * (dp[1][1] - dp[1][0]) +
det[14][2] * (dp[2][1] - dp[2][0]) +
det[14][3] * (dp[3][1] - dp[3][0]);
det[15][1] = det[13][0] * (dp[0][0] - dp[0][1]) +
det[13][2] * (dp[2][0] - dp[2][1]) +
det[13][3] * (dp[3][0] - dp[3][1]);
det[15][2] = det[11][0] * (dp[0][0] - dp[0][2]) +
det[11][1] * (dp[1][0] - dp[1][2]) +
det[11][3] * (dp[3][0] - dp[3][2]);
det[15][3] = det[7][0] * (dp[0][0] - dp[0][3]) +
det[7][1] * (dp[1][0] - dp[1][3]) +
det[7][2] * (dp[2][0] - dp[2][3]);
}
}
//----------------------------------------------------------------------------
inline void GjkCollisionState::compute_vector(int bits, VectorF& v)
{
F32 sum = 0;
v.set(0, 0, 0);
for (int i = 0, bit = 1; i < 4; ++i, bit <<= 1) {
if (bits & bit) {
sum += det[bits][i];
v += y[i] * det[bits][i];
}
}
v *= 1 / sum;
}
//----------------------------------------------------------------------------
inline bool GjkCollisionState::valid(int s)
{
for (int i = 0, bit = 1; i < 4; ++i, bit <<= 1) {
if (all_bits & bit) {
if (s & bit) {
if (det[s][i] <= 0)
return false;
}
else
if (det[s | bit][i] > 0)
return false;
}
}
return true;
}
//----------------------------------------------------------------------------
inline bool GjkCollisionState::closest(VectorF& v)
{
compute_det();
for (int s = bits; s; --s) {
if ((s & bits) == s) {
if (valid(s | last_bit)) {
bits = s | last_bit;
if (bits != 15)
compute_vector(bits, v);
return true;
}
}
}
if (valid(last_bit)) {
bits = last_bit;
v = y[last];
return true;
}
return false;
}
//----------------------------------------------------------------------------
inline bool GjkCollisionState::degenerate(const VectorF& w)
{
for (int i = 0, bit = 1; i < 4; ++i, bit <<= 1)
if ((all_bits & bit) && y[i] == w)
return true;
return false;
}
//----------------------------------------------------------------------------
inline void GjkCollisionState::nextBit()
{
last = 0;
last_bit = 1;
while (bits & last_bit) {
++last;
last_bit <<= 1;
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
void GjkCollisionState::set(Convex* aa, Convex* bb,
const MatrixF& a2w, const MatrixF& b2w)
{
a = aa;
b = bb;
bits = 0;
all_bits = 0;
reset(a2w,b2w);
// link
mLista = CollisionStateList::alloc();
mLista->mState = this;
mListb = CollisionStateList::alloc();
mListb->mState = this;
}
//----------------------------------------------------------------------------
void GjkCollisionState::reset(const MatrixF& a2w, const MatrixF& b2w)
{
VectorF zero(0,0,0),sa,sb;
a2w.mulP(a->support(zero),&sa);
b2w.mulP(b->support(zero),&sb);
v = sa - sb;
dist = v.len();
}
//----------------------------------------------------------------------------
void GjkCollisionState::getCollisionInfo(const MatrixF& mat, Collision* info)
{
AssertFatal(false, "GjkCollisionState::getCollisionInfo() - There remain scaling problems here.");
// This assumes that the shapes do not intersect
Point3F pa,pb;
if (bits) {
getClosestPoints(pa,pb);
mat.mulP(pa,&info->point);
b->getTransform().mulP(pb,&pa);
info->normal = info->point - pa;
}
else {
mat.mulP(p[last],&info->point);
info->normal = v;
}
info->normal.normalize();
info->object = b->getObject();
}
void GjkCollisionState::getClosestPoints(Point3F& p1, Point3F& p2)
{
F32 sum = 0;
p1.set(0, 0, 0);
p2.set(0, 0, 0);
for (int i = 0, bit = 1; i < 4; ++i, bit <<= 1) {
if (bits & bit) {
sum += det[bits][i];
p1 += p[i] * det[bits][i];
p2 += q[i] * det[bits][i];
}
}
F32 s = 1 / sum;
p1 *= s;
p2 *= s;
}
//----------------------------------------------------------------------------
bool GjkCollisionState::intersect(const MatrixF& a2w, const MatrixF& b2w)
{
num_iterations = 0;
MatrixF w2a,w2b;
w2a = a2w;
w2b = b2w;
w2a.inverse();
w2b.inverse();
reset(a2w,b2w);
bits = 0;
all_bits = 0;
do {
nextBit();
VectorF va,sa;
w2a.mulV(-v,&va);
p[last] = a->support(va);
a2w.mulP(p[last],&sa);
VectorF vb,sb;
w2b.mulV(v,&vb);
q[last] = b->support(vb);
b2w.mulP(q[last],&sb);
VectorF w = sa - sb;
if (mDot(v,w) > 0)
return false;
if (degenerate(w)) {
++num_irregularities;
return false;
}
y[last] = w;
all_bits = bits | last_bit;
++num_iterations;
if (!closest(v) || num_iterations > sIteration) {
++num_irregularities;
return false;
}
}
while (bits < 15 && v.lenSquared() > sEpsilon2);
return true;
}
F32 GjkCollisionState::distance(const MatrixF& a2w, const MatrixF& b2w,
const F32 dontCareDist, const MatrixF* _w2a, const MatrixF* _w2b)
{
num_iterations = 0;
MatrixF w2a,w2b;
if (_w2a == NULL || _w2b == NULL) {
w2a = a2w;
w2b = b2w;
w2a.inverse();
w2b.inverse();
}
else {
w2a = *_w2a;
w2b = *_w2b;
}
reset(a2w,b2w);
bits = 0;
all_bits = 0;
F32 mu = 0;
do {
nextBit();
VectorF va,sa;
w2a.mulV(-v,&va);
p[last] = a->support(va);
a2w.mulP(p[last],&sa);
VectorF vb,sb;
w2b.mulV(v,&vb);
q[last] = b->support(vb);
b2w.mulP(q[last],&sb);
VectorF w = sa - sb;
F32 nm = mDot(v, w) / dist;
if (nm > mu)
mu = nm;
if (mu > dontCareDist)
return mu;
if (mFabs(dist - mu) <= dist * rel_error)
return dist;
++num_iterations;
if (degenerate(w) || num_iterations > sIteration) {
++num_irregularities;
return dist;
}
y[last] = w;
all_bits = bits | last_bit;
if (!closest(v)) {
++num_irregularities;
return dist;
}
dist = v.len();
}
while (bits < 15 && dist > sTolerance) ;
if (bits == 15 && mu <= 0)
dist = 0;
return dist;
}
2019-12-21 21:14:44
50KB
GJK
碰撞
1