官方两大样例数据集 1、mnist数据集,就是手写数字; 2、fashion-mnist数据集,就是时尚商品。
2022-06-04 21:06:32 40.41MB tensorflow 人工智能 python 深度学习
1
时尚MNIST 简单的时尚配饰使用Tensorflow keras库中的Fashion MNIST数据集对预测进行建模。 安装和使用。 该项目使用pipenv进行依赖项管理。 您需要确保在系统上安装了pipenv 。 这是安装依赖项并开始使用的方法。 使用pipenv sync -d安装它 完成后,生成一个shell来运行文件: pipenv shell 完成后,您可以运行任何文件,并进行测试。 添加您自己的图像。 有时,要尝试对新图像进行predictions.py并使用predictions.py测试,则需要添加它们。 这是操作方法。 将图像添加到images文件夹中。 如果要测试它们,请转至src/predictions.py ,然后将其替换为您的图像名称。 看起来像这样: np.array([get_image("...") 。 由Sunrit Jana制造,<3
2022-05-04 18:06:23 2.39MB JupyterNotebook
1
CNN-On-The-Cloud- 用于为Fashion MNIST数据集构建图像分类器的代码。 使用Keras库构建并在FloydHub云平台上接受培训。 您可以在签出相应的“中型”文章 您可以通过单击下面的按钮快速获得此代码并在云上运行。
2022-04-18 18:24:57 24KB tutorial deep-learning floydhub neural-networks
1
An MNIST-like dataset of 70,000 28x28 labeled fashion images. MNIST-like 的数据集,包含70,000张28x28标记的时尚图像。 fashion-mnist_test.csv fashion-mnist_train.csv Fashion MNIST_datasets.txt Fashion MNIST_datasets.zip
2021-11-06 18:57:13 67.18MB 数据集
1
Fashion_MNIST数据集。这是其中的训练集。后面还要测试集。
2021-10-26 14:20:11 126.88MB Fashion_MNIST数据集
1
训练数据图片train-images-idx3-ubyte 训练数据标签train-labels-idx1-ubyte 测试数据图片t10k-images-idx3-ubyte 测试数据标签t10k-labels-idx1-ubyte
2021-10-19 09:06:35 29.45MB pytorch 机器学习
1
Fashion-MNIST 数据集,是Kaggle上热门的数据集,放在代码MNIST_data子目录可直接使用在Keras的数据集加载的函数中。
2021-08-27 16:37:54 29.45MB MNIST Fashion-MNIST Image Dataset
1
是我大作业的代码了哈哈,要是需要带注释的可以私聊哈哈 代码使用方法: 1. 读取数据集 2. 初始化模型参数(选择哪个模型就初始化哪个) 3.定义激活函数(只有选择带隐含层的模型才需要激活函数) 4.防止过拟合(只有选择带隐含层的模型才需要防止过拟合,不过因为下面我们用的权重衰减在训练是也有定义,所以我们需要也给它加个定义) 5.定义模型(选择哪个模型就定义哪个) 6.定义损失函数 7. 定义优化函数 8.训练模型(训练结束可进行绘图) 9. 进行预测 可变参数: 1.选择模型(三种模型,可选用) 2.激活函数(两种) 3.防止过拟合(两种方法,可选用也可都用) 权重衰减(通过lambd 来调整, lambd = 0 即不使用此方法) 丢弃法(通过定义模型时选择) 4.损失函数(咱们的代码只用了一种) 5.优化方法(咱们的代码只用了一种) 6.训练模型(迭代周期数num_epochs和学习率lr可调) 7.定义数据集时小批量的大小
Fashion-MNIST图像数据集是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自10种类别的共7万个不同商品的正面图片。 之前用Pycharm下载总是很忙且容易出错,后来发现可以下载后直接加载,很方便
2021-08-06 23:38:48 29.45MB Fashion-MNIST数据集
1