拉姆代斯兰群岛 递归比较Clojure或ClojureScript数据结构,并生成结果的彩色差异。 Deep-diff2最主要用于创建供人类使用的视觉差异,如果您要以编程方式比较/修补Clojure数据结构,则可能更合适,请参阅 。 支持Lambda Island开源 deep-diff2是Lambda Island标签上发布的越来越多的高质量Clojure库和工具的一部分。 如果您正在商业上使用此项目,那么您将可以来偿还该,以便我们可以继续享受欣欣向荣的Clojure生态系统。 安装 部门 lambdaisland/deep-diff2 {:mvn/version "2.0.108"} project.clj [lambdaisland/deep-diff2 "2.0.108"] 用 ( require '[lambdaisland.deep-diff2 :as ddiff]) (
2025-06-13 18:56:33 139KB Clojure
1
森林课堂 - 智能积分管理系统 系统简介 森林课堂是一个专为教师设计的智能积分管理平台,采用生动有趣的森林主题,让班级管理变得轻松愉快。通过积分激励的方式,培养学生良好的行为习惯,提升课堂参与度。 核心特色 直观的积分管理 实时积分统计和展示 可视化的积分排行榜 灵活的积分调整功能 详细的积分历史记录 激励奖励系统 自定义奖品管理 积分兑换奖品 智能库存管理 激励目标设定 便捷的学生管理 批量导入学生信息 分组管理功能 个性化学生档案 数据导出功能 数据分析功能 班级积分概览 个人成长轨迹 积分趋势分析 行为表现分析 应用场景 课堂表现记录 作业完成情况 行为习惯养成 班级活动参与 特殊贡献奖励 系统优势 界面清新友好,操作简单直观 激励机制科学,促进学生成长 数据统计全面,支持决策分析 管理方式灵活,适应不同需求 移动端完美适配,随时随地使用 使用建议 适用于: 小学班级管理 课后辅导机构 特色教育活动 行为习惯培养 让我们一起,用积分管理的方式,创造更有趣、更有效的教育环境!
2025-06-12 23:08:28 990KB cursor
1
Deep Belief Nets in C++ and CUDA C Volume 2 Autoencoding in the Complex Domain 英文epub 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
2025-06-10 16:15:02 5.46MB Deep Belief Nets CUDA
1
grokking deep learning Andrew.W.Trask 2019 Grokking Deep Learning was written to help give you a foundation in deep learning so that you can master a major deep learning framework. It begins by focusing on the basics of neural networks and then switches its focus to provide an in-depth look at advanced layers and architectures
2025-06-03 10:37:18 13.59MB 深度学习
1
### 深度学习概述与基础知识 #### 一、引言 《深入探索深度学习》是一本详尽介绍深度学习理论与实践的书籍,由Aston Zhang、Zachary C. Lipton、Mu Li 和 Alexander J. Smola共同编写。本书旨在为读者提供一个系统的学习框架,涵盖从基础数学概念到复杂神经网络模型的各个方面。 #### 二、深度学习的动机 本书开篇通过一个动机性的例子来阐述深度学习的重要性及其在实际问题中的应用潜力。这个例子可能是关于图像识别或自然语言处理的应用案例,旨在展示深度学习模型如何能够自动地从原始数据中学习特征,并解决传统方法难以解决的问题。 #### 三、深度学习的关键组成部分 接下来介绍了构建深度学习系统的几个核心要素: - **数据获取**:包括数据的收集、清洗以及预处理等步骤。 - **模型定义**:涉及到选择合适的网络结构(如卷积神经网络、循环神经网络等)以及损失函数。 - **优化算法**:用于最小化损失函数,从而使模型能够更好地拟合训练数据。 - **评估指标**:用以衡量模型性能的标准,例如准确率、精确率、召回率等。 #### 四、不同类型的机器学习问题 本节探讨了监督学习、非监督学习、半监督学习和强化学习等不同类型的机器学习任务,强调了每种类型的特点及其应用场景。这些分类有助于理解深度学习技术如何被应用于各种实际问题中。 #### 五、深度学习的历史背景 回顾了机器学习领域的发展历程,特别是深度学习技术是如何从最初的神经网络模型逐步演进到今天的复杂结构。通过对历史的梳理,可以更好地理解当前技术的优势与局限性。 #### 六、深度学习的成功案例 列举了一些深度学习领域的成功案例,比如图像识别、语音识别、自然语言处理等领域取得的重大突破。这些案例展示了深度学习技术的实际应用效果及其对未来技术进步的影响。 #### 七、深度学习的特点 分析了深度学习与其他机器学习方法相比的独特之处,包括但不限于: - **自动化特征提取**:深度学习模型能够自动地从原始数据中提取有用的特征,减少了人工设计特征的需求。 - **大规模数据处理能力**:深度学习特别适用于处理大规模的数据集。 - **模型复杂度**:现代深度学习模型通常具有较高的复杂度,这使得它们能够在复杂的任务上表现优异。 #### 八、预备知识 这部分内容是本书的基础部分,主要包括以下方面: - **数据操作**:介绍如何加载、处理和操作数据集,包括常见的数据格式转换、索引切片等。 - **数据预处理**:涉及数据清洗、缺失值处理以及数据标准化等步骤。 - **线性代数**:涵盖了标量、向量、矩阵和张量的概念及其运算规则。 - **微积分**:讨论了导数、偏导数、梯度和链式法则等基本概念。 - **概率论**:介绍了概率的基本理论、随机变量的处理以及期望与方差等相关概念。 - **自动微分**:解释了自动求导的原理及其在深度学习中的应用。 #### 九、线性神经网络 本书进入更具体的技术细节,首先介绍线性回归模型,包括其基本元素、矢量化加速技巧、正态分布下的平方损失函数以及从线性回归过渡到深度网络的方法。此外,还提供了从零开始实现线性回归模型的具体步骤,包括数据生成、模型初始化、定义模型结构、损失函数的选择、优化算法的配置等。 通过上述内容的介绍,《深入探索深度学习》不仅为读者提供了全面而深入的理论知识,还提供了丰富的实践经验,对于想要深入了解并掌握深度学习技术的人来说是一本不可多得的好书。
2025-05-23 10:02:21 25.06MB 深度学习
1
什么 这是在Unity应用程序中使用经过TensorFlow或ONNX训练的模型进行图像分类和对象检测的示例。 它使用-请注意,梭子鱼仍处于开发预览阶段,并且经常更改。 在我的更多详细信息。 分类结果: 检测结果: 如果您正在寻找类似的示例,但使用TensorflowSharp插件而不是梭子鱼,请参阅我 。 怎么样 您需要Unity 2019.3或更高版本。 2019.2.x版本似乎在WebCamTexture和Vulkan中存在一个错误,导致内存泄漏。 在Unity中打开项目。 从Window -> Package Maanger安装Barracuda 0.4.0-preview
2025-05-16 15:45:26 147.01MB deep-learning unity tensorflow image-classification
1
深度学习是人工智能领域的一个重要分支,它模仿人脑的工作机制,通过构建多层神经网络来学习数据的复杂表示。这份“深度学习PPT”涵盖了深度学习的基础知识、发展历程、主要模型,以及对未来发展的展望,旨在为对这个领域感兴趣的人提供一个全面的了解。 一、深度学习简介 深度学习的核心思想是利用多层次的非线性变换,提取输入数据的高级特征。与传统的浅层学习相比,深度学习能够处理更复杂的模式识别任务,如图像分类、语音识别和自然语言处理。它的崛起得益于大数据的爆发和计算能力的提升,使得训练大规模神经网络成为可能。 二、深度学习发展 深度学习的发展可以追溯到20世纪80年代的多层感知机(MLP),但由于过拟合和计算资源限制,进展缓慢。直到2006年,Hinton等人提出的深度信念网络(DBN)和反向传播算法的改进,开启了深度学习的新篇章。随后,AlexNet在2012年的ImageNet竞赛中大获成功,证明了深度学习在图像识别上的优越性,引发了深度学习的热潮。 三、卷积神经网络(CNN) CNN是深度学习在图像处理中的主要工具,其核心特性包括卷积层、池化层和全连接层。卷积层通过共享权重的滤波器对输入图像进行特征提取,池化层则用于降低维度,保持模型的不变性。在图像识别、目标检测和图像生成等领域,CNN的应用广泛且效果显著。 四、循环神经网络(RNN) RNN是处理序列数据的利器,尤其适用于自然语言处理任务。其结构允许信息在时间轴上流动,解决了传统神经网络无法处理序列依赖的问题。长短期记忆网络(LSTM)和门控循环单元(GRU)是对RNN的改进,解决了梯度消失问题,增强了模型对长期依赖的捕捉能力。 五、深度学习的未来发展趋势 1. 自动化机器学习(AutoML):自动设计和优化深度学习模型,减少人工干预。 2. 强化学习:结合深度学习,使AI在环境中自我学习,实现智能决策。 3. 联邦学习:在保护用户隐私的同时进行模型训练,解决数据集中化的问题。 4. 量子计算与深度学习:探索量子计算对深度学习性能的提升可能性。 5. 无监督学习与半监督学习:减少对大量标注数据的依赖,提高模型泛化能力。 这份深度学习PPT详细讲解了这些概念,是初学者入门和专业人士回顾的宝贵资源。通过深入理解并实践其中的内容,你将能更好地掌握深度学习这一强大的技术,并可能开启你在AI领域的无限可能。
2025-05-16 09:39:21 38.41MB Deep Learning
1
图 4.58 轮轨元素 图 4.59 警告信息 在点击 OK 之后,你将会看到上面的警告信息,因此说明软件已经确定了这个位置, SIMPACK 开始装配系统,并且退出铰接的定义窗口。现在点击 定义轨道,简单使用 缺省值,然后点击 OK,在轨道窗口创建一个 100m 的直线轨道。创建后的模型如下:
2025-05-14 13:32:09 18.28MB simpack
1
dcase2020_task2_baseline 这是DCASE 2020挑战任务2“用于机器状态监视的异常声音的无监督检测”的基准系统。 描述 基准系统包含两个主要脚本: 00_train.py 该脚本通过使用目录dev_data / / train /或eval_data / / train /来训练每种机器类型的模型。 01_test.py 此脚本在目录dev_data / / test /或eval_data / / test /中,为每个计算机ID生成csv文件,包括每个wav文件的异常分数。 csv文件将存储在目录result /中。 如果模式为“开发”,则还将为每个计算机ID制作包括AUC和pAUC的csv文件。 用法 1.克隆存储库 从Gi
1
哈密​​顿神经网络 Sam Greydanus,Misko Dzamba,Jason Yosinski | 2019年 论文: 博客: 基本用法 训练哈密顿神经网络(HNN): 任务1:理想的质量弹簧系统: python3 experiment-spring/train.py --verbose 任务2:理想摆锤: python3 experiment-pend/train.py --verbose 任务3:真正的摆锤(来自本《论文): python3 experiment-real/train.py --verbose 任务4:两体问题: python3 experiment-2body/train.py --verbose 任务4b:三体问题: python3 experiment-3body/train.py --verbose 任务5:像素摆锤(来自OpenAI G
2025-04-20 18:33:49 41.39MB research deep-learning neural-network physics
1