基于深度置信网络(DBN)回归预测,深度置信网络DBN回归预测,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 20:52:13 41KB 网络 网络 matlab
1
基于粒子群算法优化深度置信网络(PSO-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 19:15:00 42KB 网络 网络
1
基于麻雀算法优化深度置信网络(SSA-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 19:12:59 42KB 网络 网络
1
基于麻雀算法优化深度置信网络(SSA-DBN)的分类预测,优化参数为隐藏层节点数目,迭代次数,学习率。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-07 13:52:07 82KB 网络 网络
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真
2023-03-28 13:48:58 354KB matlab
1
详细的介绍了受限玻尔兹曼机(RBM)和深度置信网络(DBN),看完你就知道什么是深度置信网络了。侵删。
2023-03-28 11:09:13 1.6MB DBN 深度置信网络
1
深度学习的matlab工具箱,包括DBN,堆叠去噪自编码器SDAE和NN,文档中有解释每个函数的pdf文件。清晰易懂非常好用,分享在这里
2023-02-09 15:04:27 14.12MB matlab DBN SDAE
1
1、结合DBN和ELM的改进DBN-ELM模型 2、文件matlab:包含改进算法的matlab实现 3、mnist: 包含ELM、DBNDBN-ELM算法在mnist数据集上的表现 4、Skin_NonSkin: 包含ELM、DBNDBN-ELM算法在Skin_NonSkin数据集上的表现 5、文件python:包含改进算法的python实现 运行环境MATLAB2018b及以上
2022-12-02 09:29:38 7.34MB DBM网络 极限学习机 改进DBM matlab源码
基于深度置信网络的多输入单输出回归预测(DBN)(Matlab完整程序和数据) 1.data为数据集,格式为excel,7个输入特征,1个输出特征; 2.MainDBN.m为主程序文件,运行即可,其他为函数文件,无需运行; 3.命令窗口输出R2、MAE和MBE; 4.运行版本为2018及以上
2022-11-27 18:26:36 22KB DBN 深度置信网络 回归预测
基于RBM的深度学习算法 基于多层RBM模型,实现二分类学习算法,目前针对该问题是采用2层RBM,特征输入只有8维,效果并不理想。 功能框架: DBN.py:深度学习主框架,包括数据输入、输入sigmoid转换,RBM层堆叠,softmax层输出。 RBM.py:RBM层框架,包括gibss采样、交叉熵误差验证 dA.py:这个是降噪自动编码器,目前还在研究 SdA.py:,堆叠降噪自动编码器,目前仍在研究 HiddenLayer.py:隐层主要是权值计算与更新 util.py:这主要是最后的softmax函数计算及输出 normal_8.py:输入数据归一化到[0,1] train.txt:训练数据 text.txt:测试数据 基于复杂语言网络的文本分类: 这里面主要包括两部分,一部分是语言网络的生成,另一部分是语言网络的特征抽取。 第一部分采用的数据是twenty-news-group
2022-11-13 18:27:32 114KB Python
1