内容概要:本文详细解析了2023年电子设计大赛H题“信号分离装置”的赛题要求、难点、解题思路及代码实现。H题要求设计并制作一个信号分离装置,将两路周期信号A和B混合后的信号C成功分离为A'和B',且保证波形无失真并在示波器上稳定显示。难点包括信号分离和重建挑战,特别是高精度和实时性要求。文中介绍了三种主要解题思路:全数字方案、模拟芯片辅助方案和DDS芯片重建方案,每种方案各有优劣。核心代码展示了基于STM32平台的频率和相位差计算,以及系统初始化、信号采集、处理、输出和相位调整的完整流程。最后,针对硬件电路和软件调试中常见的问题提供了避坑指南。 适合人群:对电子设计和信号处理感兴趣的电子爱好者、大学生及专业研究人员。 使用场景及目标:①理解信号分离装置的设计原理和实现方法;②掌握基于STM32平台的信号处理算法及其实现;③解决硬件电路和软件调试中常见问题,提高实际操作能力。 其他说明:文章不仅提供了理论分析和代码实现,还强调了实践中的注意事项,帮助读者在实际操作中少走弯路,激发对电子设计的兴趣和热情。
1
关于多速率信号处理的一本经典著作,为中文翻译本,值得研读
2025-09-30 10:37:17 7.38MB 多抽样率 数字信号处理
1
内容概要:本文记录了一位工程师调试Alinx公司软件无线电射频Zynq UltraScale+RFSoC FPGA开发板的经历。文章详细描述了从尝试原厂提供的demo工程开始,到解决DAC输出频率与设置不匹配问题的全过程。调试过程中,作者通过ILA抓取信号、频谱仪检测DAC输出频率、信号源输入验证ADC采集信号频谱、检查RF Data Converter配置、分析Vitis代码以及最终确认AXI总线时钟频率等一系列步骤,逐步排查并解决了问题。最终发现,问题根源在于Vitis代码中对ADC抽取和DAC插入值的配置未考虑到Sample per AXI4-Stream Cycle的因素。通过对代码进行修正,成功实现了预期的频率输出和信号采集效果。; 适合人群:具有一定硬件调试经验的FPGA开发工程师或射频工程师,尤其是对RFSoC芯片有一定了解的技术人员。; 使用场景及目标:①帮助读者理解RFSoC芯片的调试流程和常见问题;②提供详细的故障排查思路和方法,特别是针对DAC和ADC频率设置不匹配的问题;③指导读者如何正确配置Vitis代码以确保RF Data Converter的正常工作。; 阅读建议:本文提供了丰富的实战经验和具体的调试步骤,建议读者在遇到类似问题时参考本文的排查思路,并结合自己的项目环境进行实践。同时,对于文中提到的技术细节,如ILA信号抓取、频谱仪检测等,读者可以深入研究相关工具的使用方法,以便更好地应用于实际工作中。
2025-09-28 12:26:39 449KB FPGA ADC/DAC 嵌入式系统 Vitis
1
内容概要:本文详细介绍了压电传感器的工作原理及其信号调节方法。压电传感器广泛应用于检测加速度、振动、振荡和压力等领域。文中首先阐述了传感器的物理特性,指出传感器输出的电荷与其受力成比例关系,并讨论了传感器的谐振频率对输出信号的影响。接着,文章深入探讨了电荷放大器作为信号调节电路的应用,强调了其高输入阻抗的特点,确保能有效地收集传感器的电荷输出。此外,还分析了电荷放大器的增益、带宽和噪声特性,特别是反馈电阻和电容的选择对电路性能的影响。最后,通过具体实例展示了使用德州仪器OPA337放大器的实际电路设计和仿真结果,验证了理论分析的有效性。 适用人群:从事传感器设计、信号处理及相关领域的工程师和技术人员,尤其是对压电传感器及其信号调理电路感兴趣的读者。 使用场景及目标:适用于需要理解和优化压电传感器信号处理的场合,如工业自动化、医疗设备、汽车电子等。目标是帮助读者掌握压电传感器的工作机制,学会设计高效的信号调节电路,提高系统的信噪比和稳定性。 其他说明:本文不仅提供了理论分析,还包括具体的电路设计和仿真实验,有助于读者更好地理解和应用所学知识。文中提到的T型网络和差分输入等实际问题也为实际工程设计提供了宝贵的参考。
1
粗体信号MATLAB代码spm12-dartel 使用 SPM12 和 DARTEL 将功能和结构 MRI 数据预处理到标准化 MNI 空间的代码。 仅可用于一次结构扫描(例如 T1 MPRAGE 或 T2 匹配带宽) 可用于两个结构扫描(例如 T1 MPRAGE和T2 匹配带宽)。 二级扫描(例如 MBW)用作将功能配准到一级结构(例如 MPRAGE)的中介 指示: 仅调用包装器脚本,因为它将在 parfor 循环中调用run函数。 所有用户可编辑的参数都在包装器的同义部分中。 除非您知道自己在做什么,否则不应编辑包装器脚本和运行函数的其他部分。 包含每个主题的 pre-dartel 状态的“runStatus”结构将保存在“batchDir”中指定的文件夹中。 pre-dartel 之后的matlab 工作区也将保存在“batchDir”中,您可以使用它重新运行DARTEL,而无需重新运行pre-dartel。 matlab 控制台输出的文本日志将为 predartel 和 dartel 保存在“batchDir”文件夹中。 所有 pre-dartel 和 DARTEL matla
2025-09-24 18:52:04 12KB 系统开源
1
胡广书的《数字信号处理》课件主要涵盖了离散时间信号与系统的基础知识,尤其在第一章中,详细阐述了离散时间信号的基本概念、典型离散信号以及离散信号的各种运算。 离散时间信号是信号处理中的重要概念,它是指在时间轴上取离散点的信号,通常通过模数转换(A/D)从连续时间信号得到。离散时间信号可以用x(nT)来表示,其中n是离散时间点的索引,T是采样间隔。在实际处理中,由于非实时性和存储需求,我们常简化表示为x(n),它代表一系列数值,即序列{ x(n) }。 典型的离散信号包括: 1. 单位抽样信号或单位脉冲δ(n),其特征是除了n=0时值为1,其他时刻均为0。 2. 脉冲串序列p(n),它是δ(n)的线性组合,例如2的负幂次k次方的δ(n)之和。 3. 单位阶跃序列u(n),当n>=0时值为1,否则为0,其性质决定了与之相关的信号n值仅限于非负轴。 4. 矩形序列RN(n),与单位抽样和单位阶跃有特定的关系,可以表示为δ(n)或u(n)的线性组合。 5. 正弦序列和实指数序列,正弦序列具有数字频率ω,实指数序列在a不等于1时可能发散或收敛。 离散信号的运算主要包括: 1. 移位:左移或右移k位,对应x(n-k)或x(n+k),k为正负整数。 2. 翻转:序列x(n)关于n=0的对称轴进行翻转,形成x(-n)。 3. 和:两个序列的对应项相加。 4. 积:两个序列的对应项相乘。 5. 累加:序列的累加运算,y(n)是所有n值小于等于n的x(n)值之和。 6. 差分:前向差分和后向差分,用于求导或近似求导。 7. 时间尺度变换:改变序列的时间尺度,如x(an)或x(n/a),a为正整数,影响采样率。 8. 奇偶分解:将信号分为偶信号xe(n)和奇信号x0(n),信号x(n)可以表示为两者之和。 这些基本概念和运算构成了数字信号处理的基础,对于理解和处理离散时间信号至关重要,特别是在信号分析、滤波器设计、通信系统等领域有着广泛的应用。对于研究生来说,深入理解这些内容是进入数字信号处理领域的关键。
2025-09-24 16:25:20 868KB 数字信号处理
1
本资源提供一种基于C/C++的高效突发信号检测算法,适用于无线通信中常见突发信号(如AIS、ACARS、ADS-B、VHF数据链等)的实时或离线分析。代码实现以下核心功能: 动态噪声估计:采用滑动窗口和抽样统计技术,自适应计算噪声基底。 智能阈值调整:结合信号幅度与噪声特性,动态生成检测门限,提升灵敏度。 突发参数可配置:支持自定义突发长度范围(minBurstLen/maxBurstLen)、检测阈值(thresholdFactor)等关键参数。 完整示例:提供从文件读取IQ数据、检测逻辑到执行时间统计的一站式示例,便于快速集成到通信系统或科研项目中。 适用场景: 无线通信系统开发(SDR、协议解析) 航空航天信号分析(ADS-B、ACARS) 海事AIS信号处理 信号处理算法教学与科研
2025-09-24 14:56:03 7KB 信号处理 ACARS ADSB
1
从给定的文件信息来看,这是一份关于“信号与系统”课程的课后习题解答,涵盖了多个章节的练习题及其解析。这份资料详细地分析了信号的分类、信号的变换、系统的线性与时不变性、以及系统响应的计算等核心概念。下面将根据这些知识点进行详细的解释和扩展。 ### 信号的分类 信号可以按照不同的属性进行分类,主要包括连续信号与离散信号、周期信号与非周期信号、以及有始信号。 - **连续信号与离散信号**:连续信号是指在时间轴上连续存在的信号,而离散信号则是指在时间轴上仅在特定的点上有定义的信号。例如,模拟音频信号就是一种连续信号,而数字音频信号则是一种离散信号。 - **周期信号与非周期信号**:周期信号是在时间轴上重复出现的信号,而非周期信号则没有固定的重复模式。周期信号可以通过傅里叶级数进行分析和表示,而非周期信号通常使用傅里叶变换进行处理。 - **有始信号**:有始信号指的是在时间的某个点开始存在,而在之前的时间段内信号值为零的信号。这种信号在实际应用中非常常见,例如,开关电路的开启瞬间产生的信号就是一种典型的有始信号。 ### 信号的变换 信号可以通过各种数学变换进行处理,例如,缩放、延时、反转等。这些变换在信号处理中具有重要的作用,可以帮助我们更好地理解和分析信号的特性。例如,在题目中提到的`f(2t)`表示信号f(t)的时间轴被压缩了,而`f([pic])`则表示信号的时间轴被展宽了。这些操作对于信号的频谱分析、滤波器设计等方面有着广泛的应用。 ### 系统的线性与时不变性 系统可以分为线性系统和非线性系统,以及时不变系统和时变系统。 - **线性系统**:如果一个系统满足叠加原理和齐次性,那么它就是一个线性系统。这意味着系统对输入信号的响应可以直接通过输入信号的线性组合来预测。 - **时不变系统**:如果一个系统的响应仅取决于输入信号的当前和过去值,而不受时间的绝对位置影响,那么它就是一个时不变系统。 ### 系统响应的计算 系统的响应可以通过微分方程来描述,特别是对于线性时不变系统。微分方程可以用来预测系统在不同输入条件下的行为。在解决这类问题时,常常需要利用拉普拉斯变换或Z变换来简化计算过程,特别是在处理连续信号或离散信号的情况下。 ### 冲激响应与阶跃响应 冲激响应和阶跃响应是描述系统动态特性的两种重要方式。 - **冲激响应**:冲激响应是系统对单位冲激信号δ(t)的响应。它是系统传输函数的基础,通过卷积积分可以得到任意输入信号的响应。 - **阶跃响应**:阶跃响应是系统对单位阶跃信号u(t)的响应。它可以用来直观地理解系统在输入突然变化时的行为。 “信号与系统”课程中的这些知识点不仅涵盖了信号的基本分类和变换,还深入探讨了系统的基本属性以及如何通过数学工具来分析和预测系统的行为。这对于理解现代通信、控制、信号处理等领域中的理论和技术具有至关重要的作用。
2025-09-23 21:19:33 4.94MB 课后答案
1
基于Vivado平台的AD9680 FPGA芯片测试程序:高速采样、lane4信号传输与jesd204b协议处理_Verilog实现,基于Vivado平台的AD9680 FPGA芯片测试程序——Verilog编写,实现1G采样率Lane4与JESD204B接收功能,基于vivado的ad9680 FPGA芯片测试程序,1g采样率lane4。 verilog编写,包括配置ad,配置时钟,jesd204b接收 ,基于您的描述,提取的核心关键词为: 基于Vivado的AD9680; FPGA芯片测试程序; 1G采样率; Lane4; Verilog编写; 配置AD; 配置时钟; JESD204B接收 结果用分号分隔为: 基于Vivado的AD9680; FPGA芯片测试; 1G采样率; Lane4; Verilog编程; AD配置; 时钟配置; JESD204B接收 这些关键词应该能概括您所描述的基于Vivado的ad9680 FPGA芯片测试程序的主要内容。,基于Vivado的AD9680 FPGA测试程序:1G采样率JESD204B接收配置与AD时钟设置
2025-09-23 17:29:45 355KB kind
1
第三章 载波频偏估计算法的研究 相干检测通信系统接收机的特点是利用一个本振激光器(LO)与接收到的 载波调制信号进行相干以获得基带信号。理论上,要求本振激光器的振荡频率与 信号载波的频率完全相同。但实际上,光通信系统中激光器的振荡频率高达几百 THz,在目前的光器件的工艺条件下,两个激光器的振荡频率与我们所预先设置 的振荡频率都不可能完全吻合,即每个激光器都肯定有一定量的振荡频率偏移。 假设每个激光器的可能的振荡频偏的范围是[-X,+X]Hz,则两个激光器的相对频 偏(载波频偏)的范围就可能为[.2)(’+2X]Hz。载波频偏估计算法的目的就是通 过对离散数字基带信号的处理,去除载波频偏对调相系统中符号相位的影响。 目前应用于相干光传输系统接收机中的前馈式全数字载波频偏估计算法,主 要有两种,分别为四次方频偏估计算法和基于预判决的频偏估计算法。本章详述 了这两种算法的原理、算法参数,给出了这两种算法在l 12Gb/s PM.DQPSK系 统中的仿真结果。针对目前硬件实现所面临的器件处理速率不足这一重要问题, 设计了这两种算法的并行处理结构的方案。此外,还设计了基于预判决的频偏估 计算法的初始化方案。最后,横向比较了现有的几种载波频偏估计算法。 3.1四次方频偏估计算法 3.1.1四次方频偏估计算法的原理 四次方频偏估计算法【lI】是根据M次方频偏估计算法而来的。M次方频偏估 计算法,是应用于相位调制相干接收系统中,去除本地振荡和信号载波之间的频 率偏差对调相信号的基带信号相位的损伤。之所以叫做M次方,是因为算法通 过对复数符号进行M次方运算,从而利用调制信息相位的M倍为一个恒定不变 的相位值这一结论,去除调制信息相位并进行频偏估计。宅E(D)QPS'K调制方式 下,M=4,M次方频偏估计算法就可以称为“四次方频偏估计算法"。该算法是 一种前馈式频偏估计算法,无需反馈环路。 四次方频偏估计算法的原理图如图3.1所示。 图3-1四次方频偏估计算法原理框图 14
2025-09-23 10:44:55 2.69MB 光纤,信号
1