卷积码和BCH码级联系统基于格图的迭代译码,安乐,,本文提出一种外码为BCH码,内码为卷积码的级联码迭代译码方案。对于外码使用基于格图的软输出维特比译码算法,对于内码使用修正的
2024-04-14 21:42:35 198KB Block codes
1
gnina(发音为NEE-na)是一个分子对接程序,具有使用卷积神经网络对配体进行评分和优化的综合支持。 这是的叉子,是的叉子。 帮助 请。 提供一个示例Colab笔记本,其中显示了如何使用gnina。 引文 如果您发现gnina有用,请引用我们的论文: GNINA 1.0:分子对接与深度学习(主要应用引用) 阿McNutt,P Francoeur,R Aggarwal,T Masuda,R Meli,M Ragoza,J Sunseri,DR Koes。 ChemRxiv,2021年 卷积神经网络的蛋白质配体评分(主要方法引用) M Ragoza,J Hochuli,E Idrobo,J Sunseri,DR Koes。 J.化学。 Inf。 模型,2017 基于原子网格的卷积神经网络的配体姿态优化M Ragoza,L Turner和DR Koes。 分子与材料的机器学习NIP
1
维特比解码matlab代码卷积通道编码和维特比解码器的实现 从头开始进行卷积通道编码和维特比解码器的MATLAB实现。 卷积编码器/解码器的实现可以使用任何首选的生成多项式。 除了信息速率r之外,所使用的生成多项式的维还隐式指定了约束长度(K)。 将报告添加到存储库中,以显示/模拟使用所生成函数的过程。
2023-11-30 15:26:35 30KB 系统开源
1
LazyProgrammer, "Convolutional Neural Networks in Python: Master Data Science and Machine Learning with Modern Deep Learning in Python, Theano, and TensorFlow" 2016 | ASIN: B01FQDREOK | 52 pages | EPUB | 1 MB This is the 3rd part in my Data Science and Machine Learning series on Deep Learning in Python. At this point, you already know a lot about neural networks and deep learning, including not just the basics like backpropagation, but how to improve it using modern techniques like momentum and adaptive learning rates. You've already written deep neural networks in Theano and TensorFlow, and you know how to run code using the GPU. This book is all about how to use deep learning for computer vision using convolutional neural networks. These are the state of the art when it comes to image classification and they beat vanilla deep networks at tasks like MNIST. In this course we are going to up the ante and look at the StreetView House Number (SVHN) dataset - which uses larger color images at various angles - so things are going to get tougher both computationally and in terms of the difficulty of the classification task. But we will show that convolutional neural networks, or CNNs, are capable of handling the challenge! Because convolution is such a central part of this type of neural network, we are going to go in-depth on this topic. It has more applications than you might imagine, such as modeling artificial organs like the pancreas and the heart. I'm going to show you how to build convolutional filters that can be applied to audio, like the echo effect, and I'm going to show you how to build filters for image effects, like the Gaussian blur and edge detection. After describing the architecture of a convolutional neural network, we will jump straight into code, and I will show you how to extend the deep neural networks we built last time with just a few new functions to turn them into CNNs. We will then test their performance and show how convolutional neural networks written in both Theano and TensorFlow can outperform the accuracy of a plain neural network on the StreetView House Number dataset.
2023-10-26 06:03:37 1.21MB Python Neural Network
1
Learning a Deep Convolutional Network for Image Super-Resolution
2023-07-01 20:01:45 6.29MB 超分辨率
1
使用深度卷积网络的语义感知图像压缩 该代码是论文一部分,论文摘要在本页底部提供。 它包括三个部分: 生成感兴趣的多结构区域(MSROI)的代码(使用CNN模型。已提供了预训练的模型) 使用MSROI映射在语义上将图像压缩为JPEG的代码 训练CNN模型的代码(供1使用) 要求: 张量流 脾气暴躁的 大熊猫 Python PIL Python SKimage 有关详细的要求列表,请参阅requirements.txt 推荐: Imagemagick(用于更快的图像操作) VQMT(用于获取指标以比较图像) 目录 如何使用此代码? 生成地图 ``` python generate_map.py ``` 在“输出”目录中生成地图和覆盖文件。 如果收到此错误 ``` InvalidArgumentError (see above for traceb
1
解开变分自编码器 PyTorch 实现的论文 团队成员: 安德烈亚斯·斯帕诺普洛斯 ( ) Demetrios Konstantinidis ( ) 存储库结构 目录包含我们迄今为止创建的模型。 一路上还会有更多。 python脚本是主要的可执行文件。 目录包含可用于训练和测试的 colab notebook。 在目录中有一个 ,其中详细解释了变分自动编码器的基本数学概念。 在目录中有一些配置文件可用于创建模型。 在目录中有我们通过使用各种配置运行模型得到的结果。 楷模 目前支持两种模型,一个简单的变分自动编码器和一个解开版本 (beta-VAE)。 模型实现可以在目录中找到。 这些模型是使用PyTorch Lightning开发的。 变分自编码器 变分自编码器是一个生成模型。 它的目标是学习数据集的分布,然后从相同的分布中生成新的(看不见的)数据点。 在下图中,我们可
1
通过卷积神经网络学习人机交互 在我在东京大学的研究实习期间保存所做工作的资料库。 日本农业技术研究院。 这项研究是关于使用卷积神经网络(CNN)通过从力传感器中学习数据模式来对人类的几种触摸交互类型进行分类(p,划痕,轻击,硬压和中性)。 该传感器将人的触觉转换为3维力数据。 数据 每0.02秒(50 fps)使用pySerial获取数据。 十个人每次对传感器进行30次触摸交互并记录数据。 从数据统计数据中推断出一个合适的阈值,以区分噪声中的正信号和一个正事件(样本)的合适数量的帧。 通过将每个数据样本内插到40帧并对它们进行归一化以减少零偏噪声的影响,对数据进行预处理。 由于该数据集属于实验室中的个人,因此此处未共享。 即将完成涵盖受试者身份以保护其隐私的过程,然后将发布数据集。 该模型 使用Python中的Keras框架使用数据训练了CNN模型。 Adam优化器用于lr = 1
1
Two-Stream-Convolutional-Networks-masterTwo-Stream-Convolutional-Networks-master
2023-04-07 15:36:35 11KB Two-Stream
1
道路分割 合作者: 目录 : 介绍 该项目是 “模式分类和机器学习”课程的一部分。 更具体地说,这是我们针对道路分割的第二个项目的解决方案。 该文件概述了我们的代码及其功能。 有关该项目本身的所有其他说明,可以在其官方文件( paper.pdf文件)中找到。 该项目的目标是通过确定哪些16x16像素斑块是道路还是不是道路来分割地球的卫星图像。 简而言之,该代码运行第一个卷积神经网络以获得基本预测。 此后,它运行第二个,即后处理一个,它使用先前计算的预测来给出最终预测。 结果 我们取得了约0.91的F1分数,下面您将看到一个图像,说明所获得的定性结果。 在图像上,每个检测到的道路补丁都以
1