介绍 再现代码 结果 内容 src:源代码,包括模型,数据读取器和实用程序 工具:用于运行测试或可视化的主要功能 脚本:用于运行测试或可视化的脚本 其他目录是不言自明的 要求 Python2.7 OpenCV pytorch v0.3.0 联合会 麻木 指示 预训练模型可。 将模型包括在./checkpoints目录中,或在./scripts/test.sh修改变量CHECKPOINT 。 跑步 ./scripts/init_dir.sh 制作必要的目录。 跑步 ./scripts/test.sh 在media目录中的图像上测试模型。 或者,您可以更改./scripts/test.sh的变量IMAGES_DIR以在您自己的图像上进行测试。 以相同的方式运行 ./scripts/visualize.sh 可视化结果。 渲染的图像将保存在./results/imgs 输出格式 采用J
2024-03-20 12:49:48 998KB Python
1
“AI Challenger全球AI挑战赛”将开放超过1000万条中英文翻译数据、70万个人体动作分析标注数据、30万张图片场景标注和语义描述数据,是国内迄今公开的规模最大的科研数据集。
2022-10-17 18:48:44 299.76MB 机器翻译
1
AI Challenger 2018 细粒度用户评论情感分析数据集 训练集: sentiment_analysis_trainingset.csv 为训练集数据文件,共105000条评论数据 sentiment_analysis_trainingset_annotations.docx 为数据标注说明文件 protocol.txt 为数据集下载协议 验证集: sentiment_analysis_validationset.csv 为验证集数据文件,共15000条评论数据 sentiment_analysis_validationset_annotations.docx 为数据标注说明文件 protocol.txt 为数据集下载协议 测试集: sentiment_analysis_testa.csv 为测试集A数据文件,共15000条评论数据 protocol.txt 为数据集下载协议
2022-05-05 12:05:52 68.35MB AIChallenger20
1
共包含6大类20个细粒度要素的情感倾向.数据集分为训练、验证、测试A与测试B四部分。数据集中的评价对象按照粒度不同划分为两个层次,层次一为粗粒度的评价对象,例如评论文本中涉及的服务、位置等要素;层次二为细粒度的情感对象,例如“服务”属性中的“服务人员态度”、“排队等候时间”等细粒度要素。每个细粒度要素的情感倾向有四种状态:正向、中性、负向、未提及
2021-11-10 16:07:48 50.39MB 细粒度感情分
1
AI-Challenger-Plant-Disease-Recognition 农作物病害检测 详情请见 环境配置 python==2.7 tensorflow==1.2.1 使用方法 更改 plot.py 脚本中路径,运行该脚本,可以绘出数据分布的直方图 下载预训练模型 更改 plant_disease.py 中的输入文件路径,输出文件路径,预训练模型文件路径 在 code 路径下直接运行 python plant_disease.py 训练完成后会直接使用训练得到的参数预测 testA 数据集,生成可以用来直接提交的 json 文件 大佬开源分享 框架:pytorch 最终成绩:0.875 框架:keras 最终成绩:0.88658 其他 Label ID Label Name 0 apple healthy(苹果健康) 1 Apple_Scab general(苹果黑星病一般) 2
2021-08-22 22:24:32 528KB 附件源码 文章源码
1
数据集分为训练、验证、测试A与测试B四部分。数据集中的评价对象按照粒度不同划分为两个层次,层次一为粗粒度的评价对象,例如评论文本中涉及的服务、位置等要素;层次二为细粒度的情感对象,例如“服务”属性中的“服务人员态度”、“排队等候时间”等细粒度要素。
2021-05-08 09:08:51 39.48MB 数据集 情感分析 AIChallenger
1
solid_challenger:Desafio 01 doCapítulo02 do新兵训练营Ignite,proporcionado pela RocketSeat
2021-04-01 14:08:15 114KB TypeScript
1
AI Challenger 细粒度用户评论情感分析;比赛资源,可放心使用 AI Challenger 细粒度用户评论情感分析;比赛资源,可放心使用 AI Challenger 细粒度用户评论情感分析;比赛资源,可放心使用AI Challenger 细粒度用户评论情感分析;比赛资源,可放心使用
2021-03-03 08:41:34 67.21MB AI Challenger 细粒
1
在线评论的细粒度情感分析对于深刻理解商家和用户、挖掘用户情感等方面有至关重要的价值,并且在互联网行业有极其广泛的应用,主要用于个性化推荐、智能搜索、产品反馈、业务安全等。本次比赛我们提供了一个高质量的海量数据集,共包含6大类20个细粒度要素的情感倾向。参赛人员需根据标注的细粒度要素的情感倾向建立算法,对用户评论进行情感挖掘,组委将通过计算参赛者提交预测值和场景真实值之间的误差确定预测正确率,评估所提交的预测算法。
2021-01-28 03:09:17 8.83MB AIchallenger 细粒度情感分析
1
AI Challenger 全球AI挑战赛”是面向全球人工智能人才的开源数据集和编程竞赛平台,致力于满足AI人才成长对高质量丰富数据集的需求,推动AI在科研与商业领域结合来解决真实世界的问题。AI Challenger以服务、培养AI人才为使命,打造良性可持续的AI科研与应用新生态。2017年首届大赛发布了千万量级的数据集、一系列兼具学术与产业意义的竞赛、超过200万人民币的奖金,吸引了来自全球65个国家的8892支团队参赛,成为目前国内规模最大的科研数据集平台、以及最大的非商业化竞赛平台。AI Challenger 2018带来十余个全新的数据集与竞赛,以及超过300万人民币的奖金,“用AI挑战真实世界的问题
1