传统的Census+Hamming距离立体匹配算法往往由于将邻域像素等同对待,从而缺少足够的匹配信息,造成较高的误匹配率。对此提出了一种自适用加权的Hamming距离算法,通过引入邻域像素空间距离,使在距离测算时将邻域像素分等级计算,丰富了匹配图像的信息。并且使用梯度图像像素之间的距离作为聚合代价计算的权值,实验证明其对于噪声有一定的抗干扰性,并且能够很好地反映纹理等信息,同时引入稀疏聚合窗口来减少算法的复杂度。最后进行亚像素插值增大匹配的正确性。通过对比试验证明,此算法不仅能够提高匹配的准确性和抗干扰性,还能减少算法的复杂度,适用于实时的立体匹配。
2022-09-21 10:48:30 505KB Census变换
1
针对AD-Census变换采用固定权重将AD变换代价与Census变换代价合成的双目立体匹配代价无法体现像素点区域特征的问题,提出一种基于自适应权重AD-Census变换的双目立体匹配算法。算法首先通过增加相邻像素点的灰度差阈值条件改善十字支撑自适应窗口;然后以每个像素点的十字支撑自适应窗口的最短臂长为自变量,利用指数形式的函数,进行AD变换代价与Census变换代价合成权重的自适应设置。由于像素点十字支撑自适应窗口的最短臂长能够反映像素点的区域特性,因此自适应设置的权重大小与像素点的区域特性直接相关,计算图像边缘区域像素点的匹配代价时,AD变换的权重大;计算平滑区域像素点的匹配代价时,Census变换的权重大。Middlebury第3代双目立体匹配评估平台的结果显示,基于自适应权重AD-Census变换的双目立体匹配性能与基于AD-Census变换的双目立体匹配性能相比,所有图像集的全部像素点的视差平均误差减小了25%,非遮挡像素点的视差平均误差减小了20%,性能得到了提升;平台上包括Adir在内的多个图像集的匹配结果表明基于自 适应权重AD-Census变换的双目立体匹配更适合含纹理丰富、存在重复区域的图像。
2022-03-28 20:54:18 1.66MB 双目立体匹配
1
提出了一种基于图像的陨石坑区域检测技术。首先,通过对原始图像进行Census变换并获取变换后的直方图;其次,利用主分量分析的方法对直方图空间进行降维压缩,并将压缩后的直方图作为特征向量,同时利用主分量分析的重构误差设定阈值构建第一层分类器;再次,基于Boosting原则对训练样本集进行选择,并利用支持向量机构建第二、三层分类器;最后,将测试样本依次送入这3层分类器确定该样本是否含有陨石坑。在实验过程中,通过对原始图像进行连续缩放,并遍历所有大小为20×20的子图像,以检测大小不一的陨石坑区域,并研究了虚警
2021-10-09 21:44:34 494KB 工程技术 论文
1
针对现有立体匹配算法对噪声敏感、易失真、在视差不连续区域与弱纹理区域误匹配率高的问题, 提出一种改进Census变换与梯度融合的多尺度立体匹配算法。采用支持窗口内所有像素的加权平均灰度值作为Census变换的参考值, 将Census代价与由水平和垂直方向归一化结合的梯度代价进行加权融合, 通过设置噪声容限获得稳定的代价, 提高了单像素匹配代价的可靠性;在多分辨率尺度下, 采用改进引导滤波算法完成对匹配代价的聚合;通过视差提取获得视差图。实验结果表明, 该算法在Middlebury测试平台上对标准立体图像对的平均误匹配率为4.74%, 对27组扩展立体图像对的平均误匹配率为8.67%。该算法使得视差不连续区域与弱纹理区域的误匹配率进一步降低, 且对噪声和光照等干扰表现出较好的稳健性。
2021-09-09 09:38:12 11.95MB 机器视觉 立体匹配 Census变 梯度变换
1